




## DESERT TORTOISE COUNCIL

3807 Sierra Highway #6-4514

Acton, CA 93510

[www.deserttortoise.org](http://www.deserttortoise.org)

[eac@deserttortoise.org](mailto:eac@deserttortoise.org)

**Via email only**

December 30, 2025

Ms. Jenna Giddens, Ms. Betsy Bangert  
Bureau of Land Management – Red Rock Sloan Field Office  
4701 North Torrey Pines Drive  
Las Vegas, NV 89130  
[ebangert@blm.gov](mailto:ebangert@blm.gov), [BLM\\_NV\\_LV\\_SloanCanyon\\_NCA@blm.gov](mailto:BLM_NV_LV_SloanCanyon_NCA@blm.gov)

RE: Sloan Canyon Public Trail Route Workshop, Sloan Canyon National Conservation Area

Dear Ms. Bangert,

The Desert Tortoise Council (Council) is a non-profit organization comprising hundreds of professionals and laypersons who share a common concern for wild desert tortoises and a commitment to advancing the public's understanding of desert tortoise species. Established in 1975 to promote conservation of tortoises in the deserts of the southwestern United States and northern Mexico, the Council routinely provides information and other forms of assistance to individuals, organizations, and regulatory agencies on matters potentially affecting desert tortoises within their geographic ranges.

Both our physical and email addresses are provided above in our letterhead for your use when providing future correspondence to us. When given a choice, we prefer to receive emails for future correspondence, as mail delivered via the U.S. Postal Service may take several days to be delivered. Email is an “environmentally friendlier way” of receiving correspondence and documents rather than “snail mail.”

We appreciate this opportunity to provide comments on the above-referenced project. Given the location of the trail system in habitats occupied by the Mojave desert tortoise (*Gopherus agassizii*) (synonymous with Agassiz's desert tortoise), our comments include recommendations intended to enhance protection of this species and its habitat during activities that may be authorized by the Bureau of Land Management (BLM), which we recommend be added to project terms and conditions in the authorizing documents [e.g., issuance of right-of-way (ROW) grants, management plan and decision document, etc.] as appropriate. Please accept, carefully review, and include in the relevant project file the Council's following comments and appendix for the proposed action.

The Mojave desert tortoise is among the top 50 species on the list of the world's most endangered tortoises and freshwater turtles. The International Union for Conservation of Nature's (IUCN) Species Survival Commission, Tortoise and Freshwater Turtle Specialist Group, now considers the Mojave desert tortoise to be Critically Endangered (Berry et al. 2021), "... based on population reduction (decreasing density), habitat loss of over 80% over three generations (90 years), including past reductions and predicted future declines, as well as the effects of disease (upper respiratory tract disease/mycoplasmosis). *Gopherus agassizii* (sensu stricto) comprises tortoises in the most well-studied 30% of the larger range; this portion of the original range has seen the most human impacts and is where the largest past population losses have been documented. A recent rigorous rangewide population reassessment of *G. agassizii* (sensu stricto) has demonstrated continued adult population and density declines of about 90% over three generations (two in the past and one ongoing) in four of the five *G. agassizii* recovery units and inadequate recruitment with decreasing percentages of juveniles in all five recovery units."

Thank you for contacting us via email on December 11, 2025 for an opportunity to provide input on the Sloan Canyon Public Trail Network. As per the BLM's email, the planning effort will culminate in a draft Environmental Assessment (draft EA). Once a draft document is prepared, it will be made available on the BLM's ePlanning website for public review and comment. Please add the Council to the list of Affected Interests so that we may review the draft EA when available.

Review of the Sloan Canyon National Conservation Area (NCA) website<sup>1</sup>, provided the following background information: "In November 2002, Congress designated the NCA to preserve and protect a portion of southern Nevada's Mojave Desert for future generations. The 48,438-acre NCA forms the southern mountainous skyline of Las Vegas and the City of Henderson. The 14,790-acre North McCullough Wilderness lies entirely within the Sloan Canyon NCA and contains unique and spectacular natural resources including thousands of acres of pristine land that remain in a natural state. The North McCullough Wilderness is volcanic in origin and examples of lava flows, ash falls, and glassy zones are clearly displayed in the Wilderness. The North McCullough Wilderness, located only a few miles from Las Vegas and the City of Henderson, provides opportunities for solitude and a primitive and unconfined type of recreation in an area where the earth and its community of life are untrammeled. The Sloan Canyon NCA provides outstanding opportunities for visitors who desire to view the unique scenic and geologic features, remarkable cultural resources, and diverse recreation possibilities."

We appreciate the BLM depicts authorized and unauthorized routes in the link in the footnote<sup>2</sup>. Given the congressional intent of establishing the NCA for protection of natural resources, including desert tortoises and their habitats, we recommend that all unauthorized routes be eliminated. Dead end unauthorized routes such as those shown in the Sloan Canyon NCA Central Area Overview should be prioritized for closure. Rather than mark them with red Carsonite closed route markers, the BLM should implement a program of route closures that would use vertical mulching and other techniques to camouflage and eliminate the appearance of routes.

---

<sup>1</sup> <https://www.blm.gov/programs/national-conservation-lands/nevada/sloan-canyon-nca>

<sup>2</sup> <https://www.blm.gov/sites/default/files/docs/2025-11/Sloan%20Canyon%20Trail%20Workshop.zip>

Within the listed population of the Mojave desert tortoise, animals are most common and most vulnerable in relatively level areas, below about 20% slopes. Therefore, we recommend that the BLM focus route closures in areas below 20% slope, beginning with unauthorized routes. We recommend that available models (Gray et al., 2019, Nussear et al. 2012) be used to identify habitats most likely to support tortoises and use results of these models to close unauthorized and perhaps authorized routes in the areas of higher tortoise density estimates. Routes that should be prioritized for closure include redundant routes, all those in washes, and social routes that were not created by heavy equipment, particularly those that are seldom used and already in a state of natural recovery.

The draft EA should be based on a complete inventory of existing routes. If not already, the authorized and unauthorized routes shown in the number two footer on the previous page should be inventoried to include widths, relative use, slopes through which the routes pass, whether they are in washes or not, etc. These data should be used to ensure that the routes exist and how they may be closed using criteria like those suggested above.

Under the Clark County Conservation of Public Land and Natural Resources Act of 2002 (Act), Congress directed that “the Secretary [of the Interior], acting through the Director of the Bureau of Land Management, shall manage the [Sloan Canyon National] Conservation Area” . . . “in a manner that conserves, protects, and enhances the resources of the Conservation Area” and that “the Secretary shall allow only such uses of the Conservation Area that the Secretary determines will further the purpose described in section 602 of this Act.” In Section 602, Congress established “the Sloan Canyon National Conservation Area to conserve, protect, and enhance for the benefit and enjoyment of present and future generations the cultural, archaeological, natural, wilderness, scientific, geological, historical, biological, wildlife, educational, and scenic resources of the Conservation Area.”

Thus, when BLM is proposing to authorize new activities or change existing activities in this NCA, BLM should demonstrate how the proposed authorizations of these new/changed activities would comply with Section 602 of the Act including for the tortoise/tortoise habitat. Such authorizations would include monitoring the impacts of these new/changed activities to these resources using appropriate methods to detect changes to these resources and effective actions that would be taken to change on-the-ground management if the monitoring indicated that current management is not conserving, protecting, and enhancing the resources of the Conservation Area, including the tortoise/tortoise habitat.

Herein we provide the BLM with a few resources to help develop the draft EA and implement route closures. Appendix A includes an extensive list of available literature concerning impacts associated with both legal and illegal off-highway vehicle use (OHV) in desert habitats. We expect that the BLM will use this information to prepare an analysis of impacts that is scientifically well-supported and credible. The impacts analysis in the draft EA should include recommendations of where trails would be authorized and allowable uses on those trails; maintenance and monitoring plans for the trail network (including methods and frequencies of implementation); methods and timelines for restoring trails that are not authorized; and monitoring of direct and indirect impacts to soils, vegetation, and wildlife (including the tortoise) from trail use, especially from authorized and unauthorized uses (e.g., mountain bikes, dogs, etc.).

With respect to the analysis in the draft EA being scientifically well supported and credible, we remind BLM that in the National Environmental Policy Act (NEPA), Congress declared that federal agencies shall “[u]tilize a systematic, interdisciplinary approach which will ensure the integrated use of the natural and social sciences . . . in planning and in decisionmaking.” To comply with this requirement, BLM should use the latest information from scientific journals and reports in its development of alternatives and analysis of impacts with respect to natural resources including the tortoise/tortoise habitat. This analysis and any conclusions stated in the draft EA regarding the tortoise and other natural resources should be supported with citations from the scientific literature rather than be unsupported conclusions. In addition, BLM should ensure that it complies its policy on Advancing Science in the BLM: An Implementation Strategy IB 2015-040 (BLM 2015). This policy reinforces BLM’s use of science in decision-making.

With respect to restoration of areas damaged from the establishment of routes or trails, we suggest that Abella and Berry (2016) and Abella et al. (2023) be consulted along with other recent research to identify and implement effective methods to restore the biological components of soils and re-establish native annual and perennial vegetation to damaged habitats in the NCA. The science-supported analyses and restoration methods should include analyses of their beneficial and adverse impacts to the tortoise and its habitat in the NCA, and demonstrate how each alternative would comply with the Congressional mandate that established this NCA. We expect that BLM will use this scientific information to develop action alternatives that will comply with Section 602 of the Act.

Because of the numerous adverse impacts to tortoise/tortoise habitats caused by the use of motorized OHVs (including e-bikes), we strongly recommend that all action alternatives include the continued prohibition of the public’s use of motorized vehicles (i.e., motorcycles and OHVs, including electric motorcycles and e-bikes) on unauthorized routes within the NCA.

The overall route network (roads and trails) of Sloan Canyon should be described and evaluated as the activities from the entire route network in the NCA impact the natural resources in the NCA including the tortoise/tortoise habitat. For example, Averill-Murray and Allison (2023) said, “we recommend road densities, including all linear features used for travel [e.g., trails], of less than 0.6 km/km<sup>2</sup> as a general target for travel management in areas where wildlife conservation is a priority. Lower densities may be necessary in particularly sensitive areas.” If BLM is managing this NCA for tortoises, then the trail densities should be less than these densities described in Averill-Murray and Allison (2023). In addition, they report that the use of vehicles (mountain bikes are vehicles) also “degrade habitat outside their direct footprint, for instance by spreading invasive plant species (Gelbard and Belnap 2003) and facilitating human access deeper into wildlands (McLellan and Shackleton 1988; Trombulak and Frissell 2000)” (as cited in Averill-Murray and Allison 2023).

There are likely numerous indirect impacts to the natural resources in the NCA from human uses in areas adjacent to the NCA. If BLM is managing for the conservation, protection, and enhancement of the tortoise and other natural resources in the NCA, then BLM should be including population connectivity and linkage habitat in its management of the tortoise and other wildlife species. Averill-Murray et al. (2021) state that “[m]aintaining an ecological network for the Mojave desert tortoise, with a system of core habitats (TCAs = Tortoise Conservation Areas) connected by linkages, is necessary to support demographically viable populations and long-term

gene flow within and between TCAs.” We presume that the NCA is considered a TCA because of the purpose and management of the NCA by in the Act. Part of conserving, protecting, and enhancing tortoise/tortoise habitat in the NCA would include assessing and managing linkage habitats that provide effective connectivity to other TCAs. “Ignoring minor or temporary disturbance on the landscape could result in a cumulatively large impact that is not explicitly acknowledged (Goble, 2009); therefore, understanding and quantifying all surface disturbance on a given landscape is prudent.”

To accomplish this, “habitat linkages among TCAs must be **wide enough** [emphasis added] to sustain multiple home ranges or local clusters of resident tortoises (Beier and others, 2008; Morafka, 1994), while accounting for edge effects, in order to sustain regional tortoise populations.” The lifetime home range for the Mojave desert tortoise is more than 1.5 square miles (3.9 square kilometers) of habitat (Berry 1986) and may make periodic forays of more than seven miles (11 kilometers) at a time (Berry 1986). Consequently, effective linkage habitats are not long narrow corridors. Any development within them has an edge effect (i.e., indirect impact) that extends from all sides into the linkage habitat further narrowing or impeding the use of the linkage habitat, depending on the extent of the edge effect. Thus, when BLM is managing the NCA for the conservation, protection, and enhancement of these natural resources as mandated by the Act (including the tortoise/tortoise habitat), these indirect impacts/edge effects should be described and analyzed for each alternative in the draft EA. These impacts would include those from the use of all vehicles by the public on trails and routes in the NCA **and** adjacent areas.

We recommend incorporating the findings of Averill-Murray et al. (2021) in the development of alternatives for the draft EA and their analysis to ensure that the NCA does not become an island with a small tortoise population that is disconnected from other tortoise populations and eventually is extirpated because of demographic, genetic, and/or environmental effects. The fundamentals of conservation biology include the need for gene flow between populations to maintain genetic diversity; this enables a species to more likely survive, especially during climate change, which supports biodiversity. Thus, linkage habitats are important as they provide connectivity among wildlife populations to maintain viability and biodiversity.

If BLM allows dogs or is considering allowing dogs to accompany their owners on trails, BLM should analyze this impacts on wildlife including the tortoise. Research has been conducted on the presence of wildlife near trails when dogs are allowed/not allowed, and the impacts of feral and free-roaming dogs to the tortoise have been described in the scientific literature. The overall results have been that the occurrence of wildlife is diminished by the presence of dogs on trails with their owners versus no dogs (Lenth et al. 2008, Weston and Stankowich 2014).

While not a scientific study, at least one Board member has had repeated personal experiences when hiking with friends who do not want to keep their dogs on leash. The friends claim they have full control over their dogs at all times. This proves not to be true when a dog picks up an interesting scent and ignores its owner’s command to come, or sees an animal and chases it. The impacts of dogs accompanying their owners, free-ranging, and feral dogs should be analyzed in the draft EA with respect to impacts to wildlife including the tortoise.

We appreciate this opportunity to provide the above comments and trust they will help the BLM to produce its draft EA. Herein, we reiterate that the Council wants to be identified as an Affected Interest for this and all other projects funded, authorized, or carried out by the BLM that may affect desert tortoises, and that any subsequent environmental documentation for this project is provided to us at the contact information listed above. Additionally, we ask that you notify the Council at [eac@deserttortoise.org](mailto:eac@deserttortoise.org) of any proposed projects that the BLM may authorize, fund, or carry out in the range of any species of desert tortoise in the southwestern United States (i.e., *Gopherus agassizii*, *G. morafkai*, *G. berlandieri*, *G. flavomarginatus*) so we may comment on them to ensure the BLM fully considers and implements actions to conserve these tortoises as part of its directive to conserve biodiversity on lands managed by the BLM.

Please respond in an email that you have received this comment letter so we can be sure our concerns have been registered with the appropriate personnel and office for this Project.

Respectfully,



Edward L. LaRue, Jr., M.S.  
Desert Tortoise Council, Ecosystems Advisory Committee, Chairperson

### **Literature Cited**

Abella S.R. and K.H. Berry. 2016. Enhancing and restoring habitat for the desert tortoise (*Gopherus agassizii*). *Journal of Fish and Wildlife Management* 7(1):255–279.  
<https://doi.org/10.3996/052015-JFWM-046>.

Abella, S.R., K.H. Berry, and S. Ferrazzano. 2023. Techniques for restoring damaged Mojave and western Sonoran habitats, including those for threatened desert tortoises and Joshua trees. *Desert Plants* 38:4-52.  
<https://deserttortoise.org/wp-content/uploads/Abella-et-al-2023-Restoration-in-the-Mojave-Western-Sonoran-Desert-Vegetation.pdf>

Averill-Murray, R.C., T.C. Esque, L.J. Allison, S. Bassett, S.K. Carter, K.E. Dutcher, S.J. Hromada, K.E. Nussear, and K. Shoemaker. 2021. Connectivity of Mojave Desert tortoise populations—Management implications for maintaining a viable recovery network. U.S. Geological Survey Open-File Report 2021-1033, 23 p., <https://doi.org/10.3133/ofr20211033>.  
<https://pubs.usgs.gov/of/2021/1033/ofr20211033.pdf>

Averill-Murray, R.C., and L.J. Allison. 2023. Travel Management Planning for Wildlife with a Case Study on the Mojave Desert Tortoise. *Journal of Fish and Wildlife Management* 14(1):269–281; e1944-687X.  
<https://doi.org/10.3996/JFWM-22-030>

Beier, P., D.R. Majka, and W.D. Spencer. 2008. Forks in the road—Choices in procedures for designing wildland linkages. *Conservation Biology* 22(4): 836–851, <https://doi.org/10.1111/j.1523-1739.2008.00942.x>  
<https://onlinelibrary.wiley.com/doi/epdf/10.1111/j.1523-1739.2008.00942.x>

Berry, K.H. 1986. Desert tortoise (*Gopherus agassizii*) relocation: Implications of social behavior and movements. *Herpetologica* 42:113-125. <https://www.jstor.org/stable/3892242>

Lenth, B.E., R.L. Knight, and M.E. Brennan. 2008. The Effects of Dogs on Wildlife Communities. *Natural Areas Journal* 28(3), 218-227.  
[https://doi.org/10.3375/0885-8608\(2008\)28\[218:TEODOW\]2.0.CO;2](https://doi.org/10.3375/0885-8608(2008)28[218:TEODOW]2.0.CO;2)

[BLM] U.S. Bureau of Land Management. 2015. Advancing Science in the BLM: An Implementation Strategy IB 2015-040. March 18, 2015.  
<https://www.blm.gov/policy/ib-2015-040>

Goble, D.D., 2009, The endangered species act—What we talk about when we talk about recovery: *Natural Resources Journal*, v. 49, p. 1–44.  
<https://www.jstor.org/stable/24889187>

Gray, M.A., B.G. Dickson, K.E. Nussear, T.C. Esque, and T. Chang. 2019. A range-wide model of contemporary, omni-directional connectivity for the threatened Mojave desert tortoise, *Ecosphere* 10(9)e02847. 10.1002/ecs2.2847.

Morafka, D.J., 1994, Neonates—Missing links in the life histories of North American tortoises, in Bury, R.B., and Germano, D.J., eds., *Biology of North American tortoises*: Washington, D.C., National Biological Survey, Fish and Wildlife Research, v. 13, p. 161–173Berry, K.H., L.J. Allison, A.M. McLuckie, M. Vaughn, and R.W. Murphy. 2021. *Gopherus agassizii*. The IUCN Red List of Threatened Species 2021: e.T97246272A3150871.  
<https://dx.doi.org/10.2305/IUCN.UK.2021-2.RLTS.T97246272A3150871.en>

Nussear, K. E., C. R. Tracy, P. A. Medica, D. S. Wilson, R. W. Marlow, and P. S. Corn. 2012. Translocation as a conservation tool for Agassiz's Desert Tortoises: survivorship, reproduction, and movements. *Journal of Wildlife Management* 76:1341–1353.  
<https://wildlife.onlinelibrary.wiley.com/doi/epdf/10.1002/jwmg.390>

Weston, M.A., and T. Stankowich. 2014. Dogs as agents of disturbance.  
<https://wilderness-society.org/wp-content/uploads/2019/04/Dogs-as-agents-of-disturbance-Michael-A.-Weston-and-Theodore-Stankowich.pdf>

## Appendix A. Bibliography on road impacts in desert ecosystems

Aber, J.D., K.J. Nadelhoffer, P. Steudler, and J.M. Melillo. 1989. Nitrogen Saturation in Northern Forest Ecosystems. *BioScience* 39(6):8-386.

Allen, E.B., L.E. Rao, R.J. Steers, A. Bytnerowicz, and M.E. Fenn. 2009. Impacts of atmospheric nitrogen deposition on vegetation and soils at Joshua Tree National Pages, in Webb, R.H., Fenstermaker, L.F., Heaton, J.S., Hughson, D.L., McDonald, E.V., and Miller, D.M. (eds.), *The Mojave Desert: ecosystem processes and sustainability*: Reno, University of Nevada Press, p. 78–100.

Arnold, R. 2011. Focused desert tortoise survey, Lucerne Valley Desert View Ranch generating facility. APN 0435-083-39 & -435-132-01, San Bernardino County. RCA Associated, Hesperia, CA.

Averill-Murray, R.C., and L.J. Allison. 2023. Travel Management Planning for Wildlife with a Case Study on the Mojave Desert Tortoise. *Journal of Fish and Wildlife Management* 14(1):269–281; e1944-687X. <https://doi.org/10.3996/JFWM-22-030>

Beacon Solar. 2008. Application for Incidental Take of Threatened and Endangered Species. Application to California Department of Fish and Game by Beacon Solar, LLC, 700 Universe Boulevard, Juno Beach, FL.

Beazley, K.F., T.V. Snaith, F. Mackinnin, and D. Colville. 2004. Road density and potential impacts on wildlife species such as American moose in mainland Nova Scotia. *Proc. N.S. Inst. Sci.* (2004) Volume 42, Part 2, pp. 339-357.

Belnap, J. 1996. Soil surface disturbances in cold deserts: effects on nitrogenase activity in cyanobacterial-lichen soil crusts. *Biol Fertil Soils* (1996) 23:362-367.

Belnap, J. 2002. Impacts of off road vehicles on nitrogen cycles in biological soil crusts—Resistance in different U.S. deserts. *Journal of Arid Environments* 52:155–165.  
<https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=beefb9daf0961b5e6461f234c8152622d3b37323>

Berry, K.H. 1974. Desert tortoise relocation project: Status report for 1972. California Department of Transportation.

Berry, K.H. 1990. The status of the desert tortoise in California in 1989. Draft report. U.S. Bureau of Land Management, Riverside, CA.

Berry, K.H., and L.L. Nicholson. 1984. A summary of human activities and their impacts on desert tortoise populations and habitat in California. Chapter 3 in K.H. Berry (ed.), *The status of the desert tortoise (*Gopherus agassizii*) in the United States*. Desert Tortoise Council Report to the U.S. Fish and Wildlife Service. Order No. 11310-0083-81.

Berry, K.H., F.G. Hoover, and M. Walker. 1996. The effects of poaching desert tortoises in the western Mojave Desert; evaluation of landscape and local impacts. Proceedings of the Desert Tortoise Council Symposium 1996:45.

Berry, K.H., K. Keith, and T. Bailey. 2008. Status of the desert tortoise in Red Rock Canyon State Park. California Fish and Game 94(2):98-118.

Berry, K.H., J.L. Yee, A.A. Coble, W.M. Perry, and T.A. Shields. 2013. Multiple factors affect a population of Agassiz's desert tortoise (*Gopherus agassizii*) in the northwestern Mojave Desert. Herpetological Monographs, 27, 2013, 87–109.

Berry, K.H., L.M. Lyren, J.L. Yee, and T.Y. Bailey. 2014. Protection benefits desert tortoise (*Gopherus agassizii*) abundance: the influence of three management strategies on a threatened species. Herpetological Monographs, 28 2014, 66–92.

Berry, K.H., L.M. Lyren, J.S. Mack, L.A Brand, and D.A. Wood. 2016. Desert tortoise annotated bibliography, 1991–2015: U.S. Geological Survey Open-File Report 2016-1023, 312 p., <http://dx.doi.org/10.3133/ofr20161023>.

Berry, K.H., J.L. Yee, L.M. Lyren, and J.S. Mack. 2020. An Uncertain Future for a Population of Desert Tortoises Experiencing Human Impacts. *Herpetologica*, 76(1) : 1-11. <https://doi.org/10.1655/Herpetologica-D-18-00033>

Boarman, W.I. 2002. Threats to desert tortoise populations: a critical review of the literature. Unpublished Report, prepared for the West Mojave Planning Team and the Bureau of Land Management. 86 pp.

Boarman, W.I., and K.H Berry. 1995. Common ravens in the southwestern United States, 1968-92. In: Our Living Resources: A Report to the Nation on the Distribution, Abundance, and Health of U.S. Plants, Animals, and Ecosystems. Edward T. LaRoe, Gaye S. Farris, Catherine E. Puckett, Peter D. Doran, and Michael J. Mac, editors. U.S. Department of the Interior, National Biological Service.

Boarman, W.I., R.J. Camp, M. Hagan, and W. Deal. 1995. Raven abundance at anthropogenic resources in the western Mojave Desert, California. Report to Edwards Air Force Base, California.

Boarman, W.I., and M. Sazaki. 1996. Highway mortality in desert tortoises and small vertebrates: success of barrier fences and culverts. Proceedings: Florida Department of Transportation/Federal Highway Administration Transportation-Related Wildlife Mortality Seminar. Evink, G., Ziegler, D., Garrett, P. and Berry, J. (Eds). pp. 169–173.

Boarman, W.I., and M. Sazaki. 2006, A highway's road-effect zone for desert tortoises (*Gopherus agassizii*): *Journal of Arid Environments*, v. 65, p. 94–101.

Boarman, W.I., M. Sazaki, and W.B. Jennings. 1997. The effects of roads, barrier fences and culverts on desert tortoise populations in California, USA. In: Proceedings: Conservation, Restoration, and Management of Tortoises and Turtles — An International Conference, pp. 54–58.

Boarman, W.I., M.L. Beigel, G.C. Goodlett, and M. Sazaki. 1998. A passive integrated transponder system for tracking animal movements. *Wildlife Society Bulletin* 26, 886-891.

Boarman, W.I., W.B. Kristan, W.C. Webb, and H.D. Chamblin. 2005. Raven ecology in the Mojave Desert at Edwards Air Force Base: final report. U.S. Geological Survey, Western Ecological Research Center, Sacramento, CA.

Boarman, W.I., and W.B. Kristan. 2006. Evaluation of evidence supporting the effectiveness of desert tortoise recovery actions. *Scientific Investigations Report 2006-5143*. U.S. Geological Survey, Western Ecological Research Center, Sacramento, CA.

Boarman, W.I., M.A. Patten, R.J. Camp, and S.J. Collis. 2006. Ecology of a population of subsidized predators: common ravens in the central Mojave Desert, California: *Journal of Arid Environments*, v. 67, p. 248–261.

Bouchard, J., A.T. Ford, F. Eigenbrod, and L. Fahrig. 2009. Behavioral response of northern leopard frogs (*Rana pipens*) to roads and traffic: implications for population persistence. *Ecology and Society* 14(2): 23. <http://www.ecologyandsociety.org/vol14/iss2/art23/>.

Bratzel, S., and R. Tellermann. 2005. Mobilität und Verkehr. *Informationen zur politischen Bildung* 287(2):44-51.

Brocke, R.H., J.P. O'Pezio, and K.A. Gustafson. 1988 A forest management scheme mitigating impact of road networks on sensitive wildlife species. In: R.M. Degraaf and W.M. Healy (eds): *Is forest fragmentation a management issue in the northeast?* GTR-NE-140, U.S. Department of Agriculture, Forest Service, Northeastern Forest Experimental Station, Radnor, PA: 13-17.

Brooks, M.L. 1995. Benefits of protective fencing to plant and rodent communities of the western Mojave Desert, California: *Environmental Management*, v. 19, p. 65–74.

Brooks, M.L. 1999. Alien annual grasses and fire in the Mojave Desert: *Madroño*, v. 46, p. 13–19.

Brooks, M.L. 2003. Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert: *Journal of Applied Ecology*, v. 40, p. 344–353.

Brooks, M.L., T.C. Esque, and J.R. Matchett. 2003. Current status and management of alien plants and fire in desert tortoise habitat. *Desert Tortoise Council Symposium*, February 21-23, 2003.

Brooks, M.L. 2009. Spatial and temporal distribution of non-native plants in upland areas of the Mojave Desert, in Webb, R.H., Fenstermaker, L.F., Heaton, J.S., Hughson, D.L., McDonald, E.V., and Miller, D.M., eds., *The Mojave Desert—Ecosystem processes and sustainability*: Reno, University of Nevada Press, p. 101–124.

Brooks, M.L., and K.H. Berry. 1999. Ecology and management of alien annual plants in the California deserts. *Calif. Exotic Pest Plant Newslett.* 7(3/4):4-6.

Brooks, M.L., and K.H. Berry. 2006. Dominance and environmental correlates of alien annual plants in the Mojave Desert, USA: *Journal of Arid Environments*, v. 67, p. 100–124.

Brooks, M.L., and T.C. Esque. 2002. Alien plants and fire in desert tortoise (*Gopherus agassizii*) habitat of the Mojave and Colorado Deserts: *Chelonian Conservation and Biology*, v. 4, p. 330–340.

Brooks, M.L., C.M. D'Antonio, D.M. Richardson, J. B. Grace, J.E. Kelley, J. M. Ditomaso, R.J. Hobbs, M. Pellatt, and D. Pyke. 2004. Effects of Invasive Alien Plants on Fire Regimes. *Bioscience/ Vol. 54 No. 7: 677-688. July 2004.*

Brooks, M.L., and B.M. Lair. 2005. Ecological Effects of Vehicular Routes in a Desert Ecosystem. Report prepared for the United States Geological Survey, Recoverability and Vulnerability of Desert Ecosystems Program (<http://geography.wr.usgs.gov/mojave/rvde>).

Brooks, M.L., and B. M. Lair. 2009. Ecological effects of vehicular routes in a desert ecosystem. In: R.H. Webb, L.F. Fenstermaker, J.S. Heaton, D.L. Hughson, E.V. McDonald, and D.M. Miller (eds.). *The Mojave Desert: Ecosystem Processes and Sustainability*. University of Arizona Press. Tucson, AZ.

Brooks, M.L., and J.R. Matchett. 2006. Spatial and temporal patterns of wildfires in the Mojave Desert, 1980–2004. *Journal of Arid Environments Volume 67, Supplement, 2006, Pages 148-164.*

Brown, D.E., and R.A. Minnich. 1986. Fire and changes in creosote bush scrub of the western Sonoran desert, California. *American Naturalist* 116(2):411-422.

[BLM] Bureau of Land Management, U. S. Fish and Wildlife Service, and California Department of Fish and Game. 1989. Environmental assessment for selected control of the common raven to reduce desert tortoise predation in the Mojave Desert, California.

[BLM] Bureau of Land Management. 1993. Final Rand Mountains–Fremont Valley Management Plan. A Sikes Act Plan. Bureau of Land Management, Ridgecrest Resource Area, CA.

[BLM] Bureau of Land Management. 1998. The California Desert Conservation Area Plan 1980, as amended. U.S. Department of the Interior, Bureau of Land Management, CA.

[BLM] Bureau of Land Management. 1999. Chapter Two - Desert Tortoise (*Gopherus agassizii*). Working draft for West Mojave Plan. September 22, 1999. [https://www.blm.gov/ca/pdfs/cdd\\_pdfs/Ch2\\_9-22-99.pdf](https://www.blm.gov/ca/pdfs/cdd_pdfs/Ch2_9-22-99.pdf)

[BLM] Bureau of Land Management. 2002. Proposed Northern and Eastern Mojave Desert management plan - Final Environmental Impact Statement – Volumes 1 and 2. California Desert District, Riverside, CA.

[BLM] Bureau of Land Management, County of San Bernardino, and City of Barstow. 2005. Proposed West Mojave Plan Final Environmental Impact Report and Statement. BLM/CA/ES-2004-005 + 1790 -1600. Moreno Valley, CA.

[BLM] Bureau of Land Management. 2006. Record of decision for the West Mojave Plan. California Desert District, Moreno Valley, CA.

[BLM] Bureau of Land Management. 2018a. West Mojave Route Network Project Draft California Desert Conservation Plan Amendment and Supplemental Environmental Impact Statement for the California Desert District. BLM/CA/DOI-BLM-CA-D080-2018-0008-EIS. January 2018. Moreno Valley, CA.

[BLM] Bureau of Land Management. 2018b. Stoddard Valley OHV Area. BLM website accessed May 30, 2018. <https://www.blm.gov/visit/stoddard-valley-ohv-area>

Burge, B.L. 1977. Daily and seasonal behavior, and areas utilized by the desert tortoise, *Gopherus agassizii*, in southern Nevada. Proceedings of the Desert Tortoise Council Symposium 1977:59-94.

Bury, R.B., and R.A. Luckenbach. 2002. Comparison of desert tortoise (*Gopherus agassizii*) populations in an unused and off-road vehicle area in the Mojave Desert: Chelonian Conservation and Biology, v. 4, p. 457–463.

Caid, N., P. Crist, R. Gilbert, and P. Wiederkehr. 2002. Environmentally sustainable transport: concept, goal and strategy—the OECD’s EST Project. Proceedings of the Institution of Civil Engineers, Transport 153(4):219-226.

[CTTC] California Turtle and Tortoise Club. 2002. Western Rand Mountains ACEC vehicle closure. <https://tortoise.org/conservation/randacec.html>

Carr, L. W., and L. Fahrig. 2001. Effect of road traffic on two amphibian species of different vagility. Conservation Biology 15(4):1071-1078.

Charis Corporation. 2005. Supplemental Final Environmental Impact Statement - Proposed Addition of Maneuver Training Land at Fort Irwin, CA. August 2005. Prepared for the U.S. Army National Training Center, Fort Irwin, CA.

D'Antonio, C.M., and P.M. Vitousek. 1992. Biological invasions by exotic grasses, the grass-fire cycle, and global change: Annual Review of Ecology and Systematics, v. 23, p. 63–87.

DeFalco, L.A., J.K. Detling, C.R. Tracy, and S.D. Warren. 2001. Physiological variation among native and exotic winter annual plants associated with microbiotic crusts in the Mojave Desert: Plant and Soil, v. 234, p. 1–14.

Desert Gazette. 2018. El Paso Mountains. <http://digital-desert.com/el-paso-mountains/>

Doak, D., P. Kareiva, and B. Klepetka. 1994. Modeling population viability for the desert tortoise in the western Mojave Desert. Ecological Applications 4:446–460.

Edwards T., A.E. Karl, M. Vaughn, P.C. Rosen, C.M. Torres, and R.W. Murphy. 2016. The desert tortoise trichotomy: Mexico hosts a third, new sister-species of tortoise in the *Gopherus morafkai*–*G. agassizii* group. ZooKeys 562: 131– 158. doi: 10.3897/Zookeys. 562.6124.

Esque, T.C. 1992. Diet selection of the desert tortoise in the northeast Mojave Desert – FY 1991 update. Proceedings of the Desert Tortoise Council Symposium 1992:64-68.

Esque, T.C. 1994. Diet and diet selection of the desert tortoise (*Gopherus agassizii*) in the northeastern Mojave Desert. Master's Thesis. Colorado State University, Fort Collins.

Esque, T.C., C.R. Schwalbe, L.A. DeFalco, R.B. Duncan, and T.J. Hughes. 2003. Effects of desert wildfires on desert tortoise (*Gopherus agassizii*) and other small vertebrates: Southwestern Naturalist, v. 48, p. 103–111.

Estrada, J. 2017. Events. Tortoise Tracks 37:2 page 1, Summer 2017.

Fahrig, L., and T. Rytwinski. 2009. Effects of roads on animal abundance: an empirical review and synthesis. Ecology and Society 14(1): 21. [online] URL: <http://www.ecologyandsociety.org/vol14/iss1/art21/>

Federal Highway Administration and California Department of Transportation. 2017. Olancha/Cartago Four-Lane Project on U.S. Highway 395 in Inyo County from 2.1 miles south of LA Aqueduct Bridge (#48-068R) to 0.2 mile south of Ash Creek Bridge (#48-11). Final Environmental Impact Report/ Environmental Assessment with Finding of No Significant Impact and Section 4(f) Evaluation.

Forman, R.T.T. 2000. Estimate of the area affected ecologically by the road system in the United States. Conservation Biology 14(1):31-35.

Forman, R.T.T., D. Sperling, J.A. Bissonette, A.P. Clevenger, C.D. Cutshaw, V.H. Dale, L. Fahrig, R. France, C.R. Goldman, K. Haenue, J.A. Jones, F.J. Swanson, T. Turrentine, and T.C. Winter. 2002. Road ecology—science and solutions. Island Press, Washington, D.C., USA.

Forman, R.T.T., D.S. Friedman, D. Fitzhenry, J.D. Martin, A.S. Chen, and L.E. Alexander. 1997. Ecological effects of roads: toward three summary indices and an overview of North

America. In: Canter K (ed) Habitat fragmentation and infrastructure. Minister of Transport and Public Works and Water Management, Delft, Netherlands, p 40-54.

Gelbard, J.L., and J. Belnap. 2003. Roads as conduits for exotic plant invasions in a semiarid landscape. *Conservation Biology* 17:420-432.

Gibbs, J.P., and W.G. Shriver. 2002. Estimating the effects of road mortality on turtle populations. *Conserv. Biol.* 16, 1647–1652.

Goodlett, G.O., and G.C. Goodlett. 1993. Studies of unauthorized off-highway vehicle activity in the Rand Mountains and Fremont Valley, Kern County, CA. Proc. 1992 Desert Tortoise Council Symposium. 1993:163-187.

Gucinski, H., M. Furniss, R. Ziermer, and M.L. Brooks. 2001. Forest Service roads: a synthesis of scientific information. Gen Tech Rep PNW-GTR-509.1, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR.

Henen, B.T. 1992. Desert tortoise diet and dietary deficiencies that may limit egg production at Goffs, CA. *Proceedings of the Desert Tortoise Council Symposium* 1992:97.

Hessing, M. Botanist for Fort Irwin. E-mail sent to Connie Rutherford, U.S. Fish and Wildlife Service, Ventura Office, regarding off-road vehicle activity on Coolgardie Mesa. June 3, 2006. Cited in: U.S. Fish and Wildlife Service 2008. Lane Mountain milk-vetch (*Astragalus jaegerianus*) 5-Year Review: Summary and Evaluation. U.S. Fish and Wildlife Service, Ventura Fish and Wildlife Office, Ventura, California. June 2008.

Hromada, S. J., T.C. Esque, A.G. Vandergast, K.K. Drake, F. Chen, B. Gottsacker, J. Swart, and K.E. Nussear. 2023. Linear and landscape disturbances alter Mojave desert tortoise movement behavior. *Front. Ecol. Evol.* 11, 971337.

<https://www.frontiersin.org/journals/ecology-and-evolution/articles/10.3389/fevo.2023.971337/full>

Jaeger, J.A.G., L. Fahrig, and K.C. Ewald. 2005. Does the configuration of road networks influence the degree to which roads affect wildlife populations? International Conference on Ecology and Transportation 2005 Proceedings, Chapter 5 - Integrating Transportation and Resource Conservation Planning - Landscapes and Road Networks, pages 151-163. August 29, 2005.

Jaeger, J.A.G., J. Bowman, J. Brennan, L. Fahrig, D. Bert, J. Bouchard, N. Charbonneau, K. Frank, B. Gruber, and K. Tluk von Toschanowitz. 2005. Predicting when animal populations are at risk from roads: an interactive model of road avoidance behavior. *Ecological Modelling* 185 (2005) 329–348.

Jalkotzy, M.G., P.I. Ross, and M.D. Nasserden. 1997. The effects of linear developments on wildlife: a review of selected scientific literature. Arc Wildlife Services Ltd, prepared for Canadian Association of Petroleum Producers, Calgary, Alberta.

Jennings, W.B. 1992. Observations on the feeding habits and behavior of desert tortoises at the Desert Tortoise Natural Area, CA. Proceeding of the Desert Tortoise Council Symposium 1992:69-81.

Jennings, W.B. 1993. Foraging ecology of the desert tortoise (*Gopherus agassizii*) in the western Mojave desert. Master's thesis. Arlington, University of Texas: 101 pp.

Jennings, W.B. 1997. Habitat use and food preferences of the desert tortoise, *Gopherus agassizii*, in the western Mojave Desert and impacts of off-road vehicles. In J. Van Abbema (ed.), Proceedings: Conservation, Restoration, and Management of Tortoises and Turtles-An International Conference, pp. 42-45. New York Turtle and Tortoise Society, NY.

Karraker, N.E., and J.P. Gibbs. 2011. Contrasting road effect signals in reproduction of long-versus short-lived amphibians. *Hydrobiologia* 664, 213–218.

Kemp, P.R., and M.L. Brooks. 1998. Exotic species of California deserts: *Fremontia*, v. 26, p. 30–34.

Kilgo, J.C., R.F. Labisky, and D.E. Fritzen. 1998. Influences of hunting on the behavior of white-tailed deer: implications for conservation of the Florida panther. *Conservation Biology* 12:1359-1364.

Knight, R.L., and J.Y. Kawashima. 1993. Responses of raven and red-tailed hawk populations to linear right-of-ways: *Journal of Wildlife Management*, v. 57, p. 266–271.

Knight, R.L., R.J. Camp, W.I. Boarman, and H.A.L. Knight. 1999. Predatory bird populations in the east Mojave Desert, California: *Great Basin Naturalist*, v. 59, p. 331–338.

LaBerteaux, D.L. 2006. Mustard removal at the Desert Tortoise Research Natural Area, Kern County, CA. Report to the Desert Tortoise Preserve Committee, Inc.

LaRue, E. 1992. Distribution of desert tortoise sign adjacent to Highway 395, San Bernardino County, California. *Proceedings of the 1992 Symposium of the Desert Tortoise Council*.

LaRue, E. 1994. Follow-up monitoring report for Stoddard Valley-to-Johnson Valley Point-to-Point Corridor Run. Unpublished report prepared on behalf of the American Motorcyclists Association for the Barstow Resource Area of the Bureau of Land Management.

LaRue, E. 2008. Latest information on tortoises and other special-status species in Morongo Basin. Morongo Tortoise Update.7-18-2008. Circle Mountain Biological Consultants, Wrightwood, CA. [http://www.yucca-valley.org/pdf/general\\_plan\(mb\\_tortoise\\_update\\_july2008.pdf](http://www.yucca-valley.org/pdf/general_plan(mb_tortoise_update_july2008.pdf)

LaRue, E. 2014. Mohave Ground Squirrel Trapping Results for Phacelia Wildflower Sanctuary, Los Angeles County, California. <https://www.wildlife.ca.gov/Conservation/Mammals/Mohave-Ground-Squirrel/TAG/BlogPage/4/Month/4/Year/2018>

Lathrop, J. 2003. Ecological impacts of mountain biking: a critical literature review. University of Montana, Missoula.

Lei, S.A. 2004. Soil compaction from human trampling, biking, and off-road motor vehicle activity in a blackbrush (*Coleogyne ramosissima*) shrubland. *Western North American Naturalist* 64:125-130.

Loughran, C.L., J.R. Ennen, and J.E. Lovich. 2011. *Gopherus agassizii* (desert tortoise). Burrow collapse. *Herpetological Review* 42(4), 593.

Lovich, J.E., and D. Bainbridge. 1999. Anthropogenic degradation of the southern California desert ecosystem and prospects for natural recovery and restoration: *Environmental Management*, v. 24, p. 309–326.

Lovich, J.E., C.B. Yackulic, J. Freilich, M. Agha, M. Austin, K.P. Meyer, T.R. Arundel, J. Hansen, M.S. Vamstad, and S.A. Root. 2014. Climatic variation and tortoise survival: Has a desert species met its match? *Biological Conservation* 169 (2014) 214–224.

McLellan, B.N., and D.M. Shackleton. 1988. Grizzly bears and resource extraction industries: effects of roads on behavior, habitat use and demography. *J. Appl. Ecol.* 25, 451–460.

McLuckie, A.M., M.R.M. Bennion, and R.A. Fridell. 2007. Tortoise mortality within the Red Cliffs Desert Reserve following the 2005 wildfire. Utah Division of Wildlife Resource Publication 07-05.

Medica, P.A., R.B. Bury, and F.B. Turner. 1975. Growth of the desert tortoise (*Gopherus agassizii*) in Nevada. *Copeia* 1975:639-643.

Minnich, J.E. 1970. Water and electrolyte balance of the desert iguana, *Dipsosaurus dorsalis*, in its native habitat. *Comparative Biochemistry and Physiology* 35:921-933.

Minnich, J.E. 1979. Comparison of maintenance electrolyte budgets of free-living desert and gopher tortoises (*Gopherus agassizii* and *G. polyphemus*). *Proceedings of the Desert Tortoise Council Symposium 1979* Pp.166-174.

Murphy, R.W., K.H. Berry, T. Edwards, A.E. Leviton, A. Lathrop, and J.D. Riedle. 2011. The dazed and confused identity of Agassiz's land tortoise, *Gopherus agassizii* (Testudines, Testudinidae) with the description of a new species, and its consequences for conservation: *ZooKeys*, v. 113, p. 39–71.

Nafus, M.G., T.D. Tuberville, K.A. Buhlmann, and B.D. Todd. 2013. Relative abundance and demographic structure of Agassiz's desert tortoise (*Gopherus agassizii*) along roads of varying size and traffic volume. *Biological Conservation* 162 (2013) 100–106.

Nagy, K.A. 1972. Water and electrolyte budgets of a free-living desert lizard, *Sauromalus obesus*. *Journal of Comparative Physiology* 79:93-102.

Nagy, K.A., and P.A. Medica. 1986. Physiological ecology of desert tortoises. *Herpetologica* 42:73-92.

Nagy, K.A., B.T. Henen, and D.B. Vyas. 1998. Nutritional quality of native and introduced food plants of wild desert tortoises: *Journal of Herpetology*, v. 32, p. 260–267.

Noss, R.F. 1993. Wildlife corridors. Pages 43-68 in D. S. Smith and P. C. Hellmund, editors. *Ecology of Greenways*. University of Minneapolis Press, Minneapolis, MN.

Noss, R.F. 1995. Maintaining ecological integrity in representative reserve networks. World Wildlife Fund, Canada.

[OECD] Organization for Economic Co-operation and Development. 2002. OECD guidelines towards environmentally sustainable transport. OECD Publications, Paris, France.

Oftedal, O.T. 2002. The nutritional ecology of the desert tortoise in the Mojave and Sonoran deserts. Pages 194-241 in T.R. Van Devender (ed.), *The Sonoran Desert Tortoise; Natural History, Biology and Conservation*. University of Arizona Press, Tucson, AZ.

Oftedal, O.T., L.S. Hillard, and D.J. Morafka. 2002. Selective spring foraging by juvenile desert tortoises (*Gopherus agassizii*) in the Mojave Desert—Evidence of an adaptive nutritional strategy: *Chelonian Conservation and Biology*, v. 4, p. 341–352.

Oftedal, O.T., and M.E. Allen. 1996. Nutrition as a major facet of reptile conservation. *Zoo Biology* 15:491-497.

Ouren, D.S., C. Haas, C.P. Melcher, S.C. Stewart, P.D. Ponds, N. R. Sexton, L. Burris, T. Fancher, and Z.H. Bowen. 2007. Environmental effects of off-highway vehicles on Bureau of Land Management lands: A literature synthesis, annotated bibliographies, extensive bibliographies, and internet resources: U.S. Geological Survey, Open-File Report 2007-1353, 225 pp. <https://pubs.usgs.gov/of/2007/1353/report.pdf>

Parendes, L.A., and J.A. Jones. 2000. Role of light availability and dispersal in exotic plant invasion along roads and streams in the H. J. Andrews Experimental Forest, Oregon. *Conservation Biology* 14:64.

Peaden, J.M., T.D. Tuberville , K.A. Buhlmann , M.G. Nafus, and B.D. Todd. 2015. Delimiting road-effect zones for threatened species: implications for mitigation fencing. *Wildlife Research* 42(8) 650-659. <https://doi.org/10.1071/WR15082>.  
<https://toddlab.ucdavis.edu/publications/peaden%20et%20al.%202015.pdf>

Peaden, J.M., A.J. Nowakowski, T.D. Tuberville, K.A. Buhlmann, and B.D. Todd. 2017. Effects of roads and roadside fencing on movements, space use, and carapace temperatures of a threatened tortoise. *Biological Conservation* 214: 13-22.  
<https://www.sciencedirect.com/science/article/abs/pii/S0006320717301325>

Rytwinski, T., and L. Fahrig. 2011. Reproductive rate and body size predict road impacts on mammal abundance. *Ecol. Appl.* 21, 589–600.

Rytwinski, T., and L. Fahrig. 2012. Do species life history traits explain population responses to roads? A meta-analysis. *Biol. Conserv.* 147, 87–98.

Robillard, A.J., B. Folt, M. Standen, A Maguire, N. Giebink, M. Spangler, A.C. Collins, and E.M. Olimpi. 2025. Application of computer vision for off-highway vehicle route detection: A case study in Mojave desert tortoise habitat. *Remote Sensing in Ecology and Conservation*. <https://zslpublications.onlinelibrary.wiley.com/doi/pdf/10.1002/rse2.70004>

Roedenbeck, I.A., L. Fahrig, C.S. Findlay, J.E. Houlahan, J.A.G. Jaeger, N. Klar, S. Kramer-Schadt, and E.A. van der Grift. 2007. The Rauschholzhausen Agenda for Road Ecology. *Ecology and Society* 12(1): 11. <http://www.ecologyandsociety.org/vol12/iss1/art11/>

Rudis, V.A. 1995. Regional forest fragmentation effects on bottomland hardwood community types and resource values. *Landsc. Ecol.* 10:291-307.

Sanson, L. 2016. Marines seek plan to move tortoises from Johnson Valley. *Hi-Desert Star* September 8, 2016. [http://www.hidesertstar.com/news/article\\_c51696c6-7609-11e6-847d-03224974e42a.html](http://www.hidesertstar.com/news/article_c51696c6-7609-11e6-847d-03224974e42a.html)

Sazaki, M., W.I. Boarman, G. Goodlett, and T. Okamoto. 1995. Risk associated with long-distance movement by desert tortoises. *Proceedings of the Desert Tortoise Council 1994 Symposium*. pp. 33–48.

W.H. Schlesinger, and C.S. Jones. 1984. The Comparative Importance of Overland Runoff and Mean Annual Rainfall to Shrub Communities of the Mojave Desert. *Botanical Gazette* 1984 145(1): 116-124.

Sharifi, M.R., A.C. Gibson, and P.W. Rundel. 1997. Surface Dust Impacts on Gas Exchange in Mojave Desert Shrubs. *Journal of Applied Ecology*, 34(4)(Aug., 1997):837-846.

Sherwood, B., D. Cutler, and J.A. Burton. 2002. *Wildlife and roads—the ecological impact*. Imperial College Press, London, UK.

Spellerberg, I.F. 2002. Ecological effects of roads. *Land Reconstruction and Management Series, Volume 2*. Science Publishers, Enfield, UK.

Switalski, A. 2018. Off-highway vehicle recreation in drylands: A literature review and recommendations for best management practices. *Journal of Outdoor Recreation and Tourism* 21 (March 2018):87-96. <https://www.sciencedirect.com/science/article/abs/pii/S221307801830001X>

[TMC] Tierra Madre Consultants. 1991. Biological assessment for Lancaster City and Planning Area: Relative density surveys for desert tortoises and cumulative human impact evaluations for Mohave ground squirrel habitat. Report prepared by Ed LaRue for City of Lancaster. Tierra Madre Consultants, Riverside, CA.

Tracy, C.R., L.C. Zimmerman, K.D. Bradley, and K. Castle. 2006. Rates of food passage in the digestive tract of young desert tortoises: Effects of body size and diet quality. *Chelonian Conservation and Biology*: December 2006, Vol. 5, No. 2, pp. 269-273.

Tratz, W.M. 1978. Postfire vegetational recovery, productivity and herbivore utilization of a chaparral-desert ecotone. Master's Thesis. California State University, Los Angeles, CA.

Tratz, W.M., and R.J. Vogl. 1977. Postfire vegetational recovery, productivity and herbivore utilization of a chaparral-desert ecotone. Pages 426-430 in H.A. Mooney and C.E. Conrad (eds.), *Proceedings of Symposium on Environmental Consequences of Fire and Fuel Management in Mediterranean Ecosystems*. USDA Forest Service General Technical Report WO-3.

Trombulak, S.C., and C.A. Frissell. 2000. Review of ecological effects of roads on terrestrial and aquatic communities. *Conservation Biology* 14:18–30.

Tuma, M.W., C. Millington, N. Schumaker, and P. Burnett. 2016. Modeling Agassiz's Desert Tortoise Population Response to Anthropogenic Stressors. *Journal of Wildlife Management* 80(3):414–429.

<https://wildlife.onlinelibrary.wiley.com/doi/abs/10.1002/jwmg.1044>

Turner, F.B., P. Hayden, B.L. Burge, and J.B. Roberson. 1986. Egg production by the desert tortoise (*Gopherus agassizii*) in California. *Herpetologica* 42:93-104.

Turner, F.B., K.H. Berry, D.C. Randall, and G.C. White. 1987. Population ecology of the desert tortoise at Goffs, CA, 1983-1986. Report to Southern California Edison Co., Rosemead, CA.

Turtle Conservation Coalition. 2018. Turtles in Trouble: The World's 25+ Most Endangered Tortoises and Freshwater Turtles. [www.iucn-tftsg.org/trouble](http://www.iucn-tftsg.org/trouble)

Umweltbundesamt (UBA). 2003. Reduzierung der Flächeninanspruchnahme durch Siedlung und Verkehr. Materialienband. Umweltbundesamt Texte 90/03, Berlin, Germany. <http://www.umweltdaten.de/publikationen/fpdf-1/2587.pdf>.

Underhill, J.E., and P.G. Angold. 2000. Effects of roads on wildlife in an intensively modified landscape. *Environmental Reviews* 8:21-39.

U.S. District Court. 2011. Order re: remedy. Case 3:06-cv04884-SI. Center for Biological Diversity, et al., Plaintiffs v. BLM. United States District Court for the Northern District of California, USA. As cited in Berry, K.H., L.M. Lyren, J.L. Yee, and T.Y. Bailey. 2014.

Protection benefits desert tortoise (*Gopherus agassizii*) abundance: the influence of three management strategies on a threatened species. *Herpetological Monographs*, 28 2014, 66–92.

U.S. Ecology. 1989. Proponent's Environmental Assessment. California Low-Level Radioactive Waste Disposal Site. Appendices K and M, Volume II.

[USFWS] U.S. Fish and Wildlife Service. 1994a. Endangered and threatened wildlife and plants; determination of critical habitat for the Mojave population of the desert tortoise. *Federal Register* 55(26):5820-5866. Washington, D.C.

[USFWS] U.S. Fish and Wildlife Service. 1994b. Desert tortoise (Mojave population) Recovery Plan. U.S. Fish and Wildlife Service, Region 1, Portland, Oregon. 73 pages plus appendices.

[USFWS] U.S. Fish and Wildlife Service. 2008. Lane Mountain milk-vetch (*Astragalus jaegerianus*) 5-Year Review: Summary and Evaluation. Ventura Fish and Wildlife Office, Ventura, California.

[USFWS] U.S. Fish and Wildlife Service. 2011a. Revised recovery plan for the Mojave population of the desert tortoise (*Gopherus agassizii*). U.S. Fish and Wildlife Service, Pacific Southwest Region, Sacramento, California. 222 pp.

[USFWS] U.S. Fish and Wildlife Service. 2011b. Biological Opinion on Mojave Solar, LLC's Mojave Solar Project, San Bernardino County, California (8-8-11-F-3). Ventura Fish and Wildlife Office, Ventura, CA.

[USFWS] U.S. Fish and Wildlife Service 2014a. 12-month finding on a petition to reclassify *Astragalus jaegerianus* as a threatened Species. 79 *Federal Register* 25084-25092, Friday, May 2, 2014.

[USFWS] U.S. Fish and Wildlife Service. 2014b. Determination of threatened status for the western distinct population segment of the yellow-billed cuckoo (*Coccyzus americanus*); Final Rule. 79 *Federal Register* 59992-60038.

[USFWS] U.S. Fish and Wildlife Service. 2014c. Designation of critical habitat for the western distinct population segment of the yellow-billed cuckoo; Proposed Rule. 29 *Federal Register* 48548-48652.

[USFWS] U.S. Fish and Wildlife Service. 2015. Range-wide Monitoring of the Mojave Desert Tortoise (*Gopherus agassizii*): 2013 and 2014 Annual Reports. Report prepared by Linda Allison for the Desert Tortoise Recovery Office, U.S. Fish and Wildlife Service, Reno, NV.

van der Ree, R., J.A.G. Jaeger, E.A. van der Grift, and A.P. Clevenger. 2011. Effects of roads and traffic on wildlife populations and landscape function: Road ecology is moving toward larger scales. *Ecology and Society* 16(1): 48.

<http://www.ecologyandsociety.org/vol16/iss1/art48/>

von Seckendorff Hoff, K., and R.W. Marlow. 2002. Impacts of vehicle road traffic on desert tortoise populations with consideration of conservation of tortoise habitat in southern Nevada. *Chelonian Conservation and Biology* 4:449–456.

Webb, R. H. 2002. Recovery of severely compacted soils in the Mojave Desert, CA, USA. *Arid Land Research and Management* 16: 291±305, 2002.

[https://www.researchgate.net/profile/Robert-Webb-11/publication/248986794\\_Recovery\\_of\\_Severely\\_Compacted\\_Soils\\_in\\_the\\_Mojave\\_Desert\\_California\\_USA/links/00b4953c66f0204a20000000/Recovery-of-Severely-Compacted-Soils-in-the-Mojave-Desert-California-USA.pdf](https://www.researchgate.net/profile/Robert-Webb-11/publication/248986794_Recovery_of_Severely_Compacted_Soils_in_the_Mojave_Desert_California_USA/links/00b4953c66f0204a20000000/Recovery-of-Severely-Compacted-Soils-in-the-Mojave-Desert-California-USA.pdf)

Zimmerman, L.C., R.E. Espinoza, and A.M. Barber. 2006. The importance of physiological ecology in conservation biology: *Integrative and Comparative Biology*, v. 46, p. 1,191–1,205.