

DESERT TORTOISE COUNCIL

3807 Sierra Highway #6-4514 Acton, CA 93510 <u>www.deserttortoise.org</u> eac@deserttortoise.org

Via email and BLM NEPA eplanning portal

April 1, 2023

Attn: Francisco J Mendoza and Amy McGowan Tucson Field Office Bureau of Land Management 3201 East Universal Way Tucson, AZ 85756 <u>fmendoza@blm.gov</u>; <u>amcgowan@blm.gov</u>

RE: Scoping Comments - Middle Gila South Access and Transportation Plan, Pima, Pinal and Cochise Counties, Arizona (DOI-BLM-AZ-G020-2022-0028-EA)

Dear Mr. Mendoza and Ms. McGowan,

The Desert Tortoise Council (Council) is a non-profit organization comprised of hundreds of professionals and laypersons who share a common concern for wild desert tortoises and a commitment to advancing the public's understanding of desert tortoise species. Established in 1975 to promote conservation of tortoises in the deserts of the southwestern United States and Mexico, the Council routinely provides information and other forms of assistance to individuals, organizations, and regulatory agencies on matters potentially affecting desert tortoises within their geographic ranges.

As of June 2022, our mailing address has changed to: Desert Tortoise Council 3807 Sierra Highway #6-4514 Acton, CA 93510.

Our email address has not changed. Both addresses are provided above in our letterhead for your use when providing future correspondence to us.

We appreciate this opportunity to provide comments on the above-referenced project. Given the location of the proposed project in habitats likely occupied by the Sonoran desert tortoise (*Gopherus morafkai*) (synonymous with Morafka's desert tortoise), our comments pertain to

enhancing protection of this species during activities funded, authorized, or carried out by the Bureau of Land Management (BLM), which we assume will be added to the Decision Record for this project as needed. Please accept, carefully review, and include in the relevant project file the Council's following comments and attachments for the proposed project.

On November 17, 2022, the Council provided BLM with a comment letter on the Middle Gila South Travel Management Plan. We request this letter (attached) be entered into the BLM's administrative and decision records for this project during this formal public scoping period. We provide additional comments to our November 17 letter, which follow.

In September 2022, BLM announced that the Tucson Field Office would be starting an access and transportation management planning process that will designate roads and trails on BLM lands in the Middle Gila South travel management planning area. This planning area includes approximately 60,000 acres of BLM managed lands with approximately 700 miles of existing routes intermingled with Arizona State Trust and other lands.

In March 2023, BLM announced a 30-day public scoping period for the Middle Gila South, Picacho, and Lower Galiuro Travel Management Areas. In that announcement, BLM said the Planning Areas include "approximately 212,000 acres of BLM lands in Pinal, Pima, Gila and Cochise Counties, with approximately 700 miles of existing travel routes on public lands that are accessed from State and County roads and highways."

We note that the transportation management planning area has expanded greatly from 60,000 acres of BLM-managed lands in the Middle Gila South Travel Management Area to 212,00 acres in the Middle Gila South, Picacho, and Lower Galiuro Travel Management Areas (TMAs). Yet, with this more than three-fold increase in acreage, the same mileage of existing routes is reported to occur by BLM. These data concern us as they suggest that BLM likely does not have an accurate map of the current travel routes in these TMAs.

In our November 17, 2022 comment letter to BLM, the Council requested that BLM use current aerial imagery to identify and record on GIS the global network of existing routes in the Middle Gila South Travel Management Area. Following this remote sensing exercise, we strongly recommended that there be ground-truthing to verify the accuracy of this process of mapping existing routes. This is baseline data that BLM needs to help determine which routes are redundant or harmful to resources such as the tortoise/tortoise habitat before it can consider making informed management decisions on which routes should be designated as open, closed, or limited. We reiterate this need for several reasons including the requirement for cumulative effects analysis in the National Environmental Policy Act (NEPA) for preparing environmental assessments and environmental impact statements and BLM's commitment to manage for the tortoise in the Sonoran Desert Tortoise Candidate Conservation Agreement (USFWS et al. 2015).

As a signatory to the Sonoran Desert Candidate Conservation Agreement (USFWS et al. 2015), BLM committed to implementing:

- (1) BLM Manual 6840 (BLM 2008) that establishes specific procedures for managing the Sonoran desert tortoise as a BLM sensitive species, with the goal of conserving the Sonoran desert tortoise and its habitat on BLM-managed lands in cooperation with other agencies;
- (2) landscape level conservation measures (e.g., identifying areas of potential conflict between agency mission and Sonoran desert tortoise habitat and identifying and reducing or otherwise mitigating dispersal barriers between Sonoran desert tortoise populations, etc.); and
- (3) local level conservation measures (e.g., considering the effects of actions on the Sonoran desert tortoise during the planning process, and avoiding or minimizing impacts, or implementing mitigation measures to offset impacts to tortoise populations and habitat where practical and feasible, avoid, where practicable, or otherwise minimize or mitigate adverse effects of actions that could result in isolation of known Sonoran desert tortoise populations and/or landscape-level fragmentation of Sonoran desert tortoise habitat, etc.).

These three measures are only effective if BLM knows where the direct and indirect impacts to the tortoise are occurring, especially at a landscape level. The Council is concerned about projects and management decisions that contribute to degradation and loss of tortoise habitat (including habitat needed for connectivity among populations) from habitat fragmentation, new or more frequently used roads which bring invasive plant species, wildfires, etc. To conduct an accurate regional or cumulative effects analysis and comply with the Sonoran Desert Candidate Conservation Agreement, BLM needs to track these and other impacts to the tortoise at a landscape level using a geospatial tracking system for all management actions and projects authorized, funded, or carried out by BLM. We request that BLM implement and continuously update this project in its geospatial tracking system.

In the Sonoran Desert Candidate Conservation Agreement, BLM says, that through [its] Resource Management Plans (RMPs), BLM managers are directed to "[a]void, minimize or mitigate impacts associated with all BLM authorized activities including mineral material sales, rights-of-way, recreational use, travel management, and livestock grazing through project design and modifications to allowable uses in order to achieve Sonoran desert tortoise management objectives" (USFWS et al. 2015). BLM should explain in the Middle Gila South, Picacho, and Lower Galiuro Travel Management Areas environmental assessment, how it will avoid minimize, or mitigate impacts associated with these travel management plans at a local and landscape level in order to achieve Sonoran desert management objectives.

As a mitigation measure, we suggest that in areas that provide habitat for the tortoise, including linkage habitat for connectivity between populations, routes be designated as limited and closed seasonally during the active season for the tortoise, especially during the summer monsoon season.

We appreciate this opportunity to provide comments on this project and trust they will help protect tortoises during any resulting authorized activities. Herein, we reiterate that the Desert Tortoise Council wants to be identified as an Affected Interest for this and all other projects funded, authorized, or carried out by the BLM that may affect species of desert tortoises, and that any subsequent environmental documentation for this project is provided to us at the contact

information listed above. Additionally, we ask that you respond in an email that you have received this comment letter so we can be sure our concerns have been registered with the appropriate personnel and office for this project.

Respectfully,

LOD 22RA

Edward L. LaRue, Jr., M.S. Desert Tortoise Council, Ecosystems Advisory Committee, Chairperson

Attachment: November 17, 2022 Letter from Desert Tortoise Council to June Lowery, Francisco J. Mendoza, and Amy McGowan on Scoping Comments for Middle Gila South Transportation Plan (DOI-BLM-AZ-G020-2022-0028-EA)

Literature Cited

- [BLM] U.S. Bureau of Land Management. 2008b. Special Status Species Management. Handbook 6840. December 12, 2008.
- [USFWS et al.] U.S. Fish and Wildlife Service, Bureau of Land Management, Bureau of Reclamation, National Park Service, Department of Defense, Customs and Border Protection, U.S. Forest Service, Natural Resources Conservation Service, Arizona Game and Fish Department, and Arizona Department of Transportation. 2015. Candidate Conservation Agreement for the Sonoran Desert Tortoise (*Gopherus morafkai*) in Arizona. May 27, 2015. https://www.blm.gov/sites/blm.gov/files/policies/IMAZ-2016-004-a1.pdf.

DESERT TORTOISE COUNCIL

3807 Sierra Highway #6-4514 Acton, CA 93510 <u>www.deserttortoise.org</u> <u>eac@deserttortoise.org</u>

Via email only

17 November 2022

Attn: June Lowery, Francisco J Mendoza, Amy McGowan Bureau of Land Management, Tucson Field Office 3201 E. Universal Way Tucson, AZ 85756 jlowery@blm.gov, fmendoza@blm.gov. amcgowan@blm.gov

RE: Scoping Comments for Middle Gila South Transportation Plan (DOI-BLM-AZ-G020-2022-0028-EA)

Dear Ms. Lowrey, et al.,

The Desert Tortoise Council (Council) is a non-profit organization comprised of hundreds of professionals and laypersons who share a common concern for wild desert tortoises and a commitment to advancing the public's understanding of desert tortoise species. Established in 1975 to promote conservation of tortoises in the deserts of the southwestern United States and Mexico, the Council routinely provides information and other forms of assistance to individuals, organizations, and regulatory agencies on matters potentially affecting desert tortoises within their geographic ranges.

As of June 2022, our mailing address has changed to:

Desert Tortoise Council 3807 Sierra Highway #6-4514 Acton, CA 93510

Our email address has not changed. Both addresses are provided above in our letterhead for your use when providing future correspondence to us.

We appreciate this opportunity to provide comments on the above-referenced project. Given the location of the proposed project in habitats likely occupied by Sonoran desert tortoise (*Gopherus morafkai*) (synonymous with Morafka's desert tortoise), our comments pertain to enhancing protection of this species during activities funded, authorized, or carried out by the Bureau of Land

Management (BLM), which we assume will be added to the Decision Record for this project as needed. Please accept, carefully review, and include in the relevant project file the Council's following comments and attachments for the proposed project.

Based on the following information given in the BLM's Press Release dated 26 September 2022, we understand that BLM is soliciting formal scoping comments for this proposed project: "The Bureau of Land Management Tucson Field Office is starting an access and transportation management planning process that will designate roads and trails on BLM lands in the Middle Gila South travel management planning area. The resulting travel management plan will identify the transportation system that will be maintained for multiple land use activities, public land infrastructure, hunting, and other recreational opportunities."

"The BLM will consider input to evaluate the existing route system, determine appropriate management designations and options, and analyze the potential impacts from the access and transportation route designations. The planning area includes approximately 60,000 acres of BLM land about 40 to 60 miles from Tucson, near small communities in Cochise, Gila, Pima, and Pinal counties. BLM lands include approximately 700 miles of existing routes intermingled with Arizona State Trust and other lands. Most of the existing routes are unmaintained primitive roads or trails in poor conditions, with drainage and erosion problems."

"An environmental assessment [EA] for the proposed access and transportation management plan will be prepared in accordance with the National Environmental Policy Act, and opportunities for public review and comment will be available at milestone stages throughout the process. Completion of the access and transportation management plan and environmental assessment is expected in July 2023."

During the Virtual Public Meeting on October 19 and 20, 2022, BLM's presentation included the following statement – A travel management plan "[p]rovides opportunities for a range of motorized and non-motorized uses on public lands while protecting resources and minimizing conflicts among users. We request that when BLM develops and analyzes a broad range of alternatives, not just the no action and proposed action alternatives, BLM describes and analyzes how each alternative will be effective in protecting the Sonoran Desert tortoise and is habitat, including habitats needed for connectivity among populations.

In addition, we request that BLM describe and analyze in the National Environmental Policy Act (NEPA) document, how it is complying with its mitigation policy, handbook, and manual (BLM 2021a, 2021, b, 2021c); Special Status Species Management Manual (BLM 2008, BLM 2017); and the Sonoran Desert Tortoise Candidate Conservation Agreement (USFWS et al. 2015). Demonstrating this compliance would include (1) implementing a plan that monitors the impacts to the tortoise/tortoise habitat from the public's use of routes, especially use of motorized vehicles; and (2) designing and implementing a monitoring plan that is a science-based, and statistically rigorous. Finally, in the NEPA document, BLM should provide references from scientific journal articles that support its analysis and conclusions.

In its analysis of alternatives, especially those that maintain or increase the miles of routes that are accessible by vehicles, we request that BLM analyze the impacts on increased greenhouse gas emissions from increased motorized vehicle use; increased invasive plant species abundance,

density, and occurrence; increased probability of wildfires from the presence of vehicles and humans (Brooks and Matchett 2006) in areas previously not accessible by vehicles; and the loss of vegetation to sequester carbon while inputting more carbon into the atmosphere from fires.

We note in the above description that there are "approximately 700 miles of *existing routes* [emphasis added] intermingled with Arizona State Trust and other lands." Although it has been our observation that the recreating public fails to remain on designated routes, we feel strongly that it is essential that BLM designate all existing routes as either "open" or "closed," and, "limited," where necessary. We assume that BLM will use current aerial photography to identify the global network of existing routes. If so, we strongly recommend that there be some ground-truthing to identify, in particular, those "routes" that are actually dry washes.

We have read some management plans that make the blanket statement that "all dry washes are open to vehicle travel," which we strongly oppose. We prefer wording such as, "Only routes designated as 'open' will be available for vehicle travel." There is clear evidence that tortoises rely on resources associated with washes (Jennings 1992, 1993, 1997), so please be sure that there be a limited number of existing routes designated as open. Again, if BLM suspects that a given existing route is actually a wash, that there be ground-truthing to ascertain that. If these field visits reveal that an existing route is a wash that has little or no vehicle use, that it be designated as closed.

That being said, with regards to closed routes, we strongly recommend that BLM eliminate closed routes using camouflaging techniques (e.g., vertical mulching) rather than posting them as closed with red Carsonite signs. Our experience has been that the closed signs often attract use of a barely discernable route that would have not been obvious but for that sign. As such, as given above, it is highly preferable that the routes be eliminated rather than signed as "closed."

We ask that the EA include a schedule that, among other things, (1) discusses time frames in which all designated routes will be signed as "open" or "closed," and "limited" where necessary; (2) commits BLM to signing all open routes as the highest priority, followed by a commitment to sign closed routes and, preferably, eliminate them by camouflaging techniques as soon as possible; and (3) identifies a monitoring program that will, over time, determine if vehicles are remaining on the designated-open routes, and identify remedial actions where trespass is judged to be problematic.

With regards to the clause given above, "existing routes intermingled with Arizona State Trust and other lands," we ask that the EA describe how BLM's designated route network will minimize trespass on private and State Trust lands. Invariably, BLM designates routes on public lands that appear and disappear at the interface with private land boundaries, which is problematic, especially among land owners who are afflicted by trespass on their lands. Will affected private lands owners be contacted where these interfaces cannot be avoided?

Too often EAs fail to fully analyze the impacts of vehicles on tortoises and their habitats. As such, we provide a bibliography in Appendix A that is a partial list of how routes affect these resources, and expect to see a detailed analysis in the EA that utilizes these references. We also ask that BLM map tortoise concentration areas that are known to be within the 60,000-acre planning area, and target such areas for relatively more closures to minimize impacts to tortoises and their habitats.

We appreciate this opportunity to provide comments on this project and trust they will help protect tortoises during any resulting authorized activities. Herein, we reiterate that the Desert Tortoise Council wants to be identified as an Affected Interest for this and all other projects funded, authorized, or carried out by the BLM that may affect species of desert tortoises, and that any subsequent environmental documentation for this project is provided to us at the contact information listed above. Additionally, we ask that you respond in an email that you have received this comment letter so we can be sure our concerns have been registered with the appropriate personnel and office for this project.

Respectfully,

6022RA

Edward L. LaRue, Jr., M.S. Ecosystems Advisory Committee, Chairperson Desert Tortoise Council

Literature Cited

- Berry, K.H., L.J. Allison, A.M. McLuckie, M. Vaughn, and R.W. Murphy. 2021. *Gopherus agassizii*. The IUCN Red List of Threatened Species 2021: e.T97246272A3150871. https://dx.doi.org/10.2305/IUCN.UK.2021-2.RLTS.T97246272A3150871.en
- [BLM] U.S. Bureau of Land Management. 2008. Special Status Species Management. Handbook 6840. December 12, 2008.
- [BLM] 2017. Updated Bureau of Land Management Sensitive Species List for Arizona. Arizona Instructional Memorandum AZ-IM-2017-009. March 1, 2017.
- [BLM] Bureau of Land Management. 2021a. Reinstating the Bureau of Land Management (BLM) Manual Section (MS-1794) and Handbook (H-1794-1) on Mitigation. Instruction Memorandum IM 2021-046. September 22, 2021.
- [BLM] Bureau of Land Management. 2021b. Mitigation Handbook (H-1794-1). https://www.blm.gov/sites/default/files/docs/2021-10/IM2021-046_att2.pdf.
- [BLM] Bureau of Land Management. 2021c. Mitigation Manual (MS-1794). Bureau of Land Management, September 22, 2021. <u>https://www.blm.gov/sites/default/files/docs/2021-10/IM2021-046_att1_0.pdf</u>.
- Brooks, M.L., and J.R. Matchett. 2006. Spatial and temporal patterns of wildfires in the Mojave Desert, 1980–2004. Journal of Arid Environments 67 (2006) 148–164.
- Desert Tortoise Council. 2020. A Petition to the State of California Fish and Game Commission to change the status of *Gopherus agassizii* from Threatened to Endangered. Formal petition submitted on 11 March 2020.

- Jennings, B. 1992. Observations on the feeding habits and behavior of desert tortoises at the Desert Tortoise Natural Area, California. Proceeding of the Desert Tortoise Council Symposium 1992:69-81.
- Jennings, W. B. 1993. Foraging ecology of the desert tortoise (*Gopherus agassizii*) in the western Mojave desert. Master's thesis. Arlington, University of Texas: 101 pp.
- Jennings, W. B. 1997. Habitat use and food preferences of the desert tortoise, Gopherus agassizii, in the western Mojave Desert and impacts of off-road vehicles. *In* J. Van Abbema (ed.), Proceedings: Conservation, Restoration, and Management of Tortoises and Turtles-An International Conference, pp. 42-45. New York Turtle and Tortoise Society, New York.
- [USFWS et al.] U.S. Fish and Wildlife Service, Bureau of Land Management, Bureau of Reclamation, National Park Service, Department of Defense, Customs and Border Protection, U.S. Forest Service, Natural Resources Conservation Service, Arizona Game and Fish Department, and Arizona Department of Transportation. 2015. Candidate Conservation Agreement for the Sonoran Desert Tortoise (*Gopherus morafkai*) in Arizona. May 27, 2015. https://www.blm.gov/sites/blm.gov/files/policies/IMAZ-2016-004-a1.pdf.

Appendix A. Bibliography on road impacts in desert ecosystems

- Aber, J.D., K.J. Nadelhoffer, P. Steudler, and J.M. Melillo.1989. Nitrogen Saturation in Northern Forest Ecosystems. BioScience 39(6):8-386
- Allen, E.B., Rao, L.E., Steers, R.J., Bytnerowicz, A., and Fenn, M.E., 2009, Impacts of atmospheric nitrogen deposition on vegetation and soils at Joshua Tree National Pages, in Webb, R.H., Fenstermaker, L.F., Heaton, J.S., Hughson, D.L., McDonald, E.V., and Miller, D.M. (eds.), The Mojave Desert: ecosystem processes and sustainability: Reno, University of Nevada Press, .p. 78–100.
- Arnold, R. 2011. Focused desert tortoise survey, Lucerne Valley Desert View Ranch generating facility. APN 0435-083-39 & -435-132-01, San Bernardino County. RCA Associated, Hesperia, CA.
- Avery, H.W. 1997. Effects of cattle grazing on the desert tortoise, Gopherus agassizii: Nutritional and behavioral interactions. Pages 13-20 in J. Van Abbema (ed.), Proceedings of the International Conference on Conservation, Restoration, and Management of Tortoises and Turtles. New York Turtle and Tortoise Society, New York.
- Avery, H.W. 1998. Nutritional ecology of the desert tortoise (Gopherus agassizii,) in relation to cattle grazing in the Mojave Desert. Ph.D. dissertation, University of California, Los Angeles.
- Beacon Solar. 2008. Application for Incidental Take of Threatened and Endangered Species. Application to California Department of Fish and Game by Beacon Solar, LLC, 700 Universe Boulevard, Juno Beach, FL.
- Beazley, K.F., T.V. Snaith, F. Mackinnin, and D. Colville. 2004. Road density and potential impacts on wildlife species such as American moose in mainland Nova Scotia. Proc. N.S. Inst. Sci. (2004)Volume 42, Part 2, pp. 339-357.
- Belnap, J. 1996. Soil surface disturbances in cold deserts: effects on nitrogenase activity in cyanobacterial-lichen soil crusts. Biol Fertil Soils (1996) 23:362-367.
- Berry, K.H. 1974. Desert tortoise relocation project: Status report for 1972. California Department of Transportation
- Berry, K.H. 1990. The status of the desert tortoise in California in 1989. Draft report. U.S. Bureau of Land Management, Riverside, California.
- Berry, K.H., and L.L. Nicholson. 1984b. A summary of human activities and their impacts on desert tortoise populations and habitat in California. Chapter 3 in K.H. Berry (ed.), The status of the desert tortoise (*Gopherus agassizii*) in the United States. Desert Tortoise Council Report to the U.S. Fish and Wildlife Service. Order No. 11310-0083-81.

- Berry, K.H., F.G. Hoover, and M. Walker. 1996. The effects of poaching desert tortoises in the western Mojave Desert; evaluation of landscape and local impacts. Proceedings of the Desert Tortoise Council Symposium 1996:45.
- Berry, K.H., K. Keith, and T. Bailey. 2008. Status of the desert tortoise in Red Rock Canyon State Park. California Fish and Game 94(2):98-118.
- Berry, K.H., J. L. Yee, A.A. Coble, W.M. Perry, and T.A. Shields. 2013. Multiple factors affect a population of Agassiz's desert tortoise (*Gopherus agassizii*) in the northwestern Mojave Desert. Herpetological Monographs, 27, 2013, 87–109.
- Berry, K.H., L.M. Lyren, J.L. Yee, and T.Y. Bailey. 2014. Protection benefits desert tortoise (*Gopherus agassizii*) abundance: the influence of three management strategies on a threatened species. Herpetological Monographs, 28 2014, 66–92.
- Berry, K.H., L.M. Lyren, J.S. Mack, L.A Brand, and D.A. Wood. 2016. Desert tortoise annotated bibliography, 1991–2015: U.S. Geological Survey Open-File Report 2016-1023, 312 p., <u>http://dx.doi.org/10.3133/ofr20161023</u>.
- Boarman, W.I. 2002. Threats to desert tortoise populations: a critical review of the literature. Unpublished Report, prepared for the West Mojave Planning Team and the Bureau of Land Management. 86 pp.
- Boarman, W.I., and K.H Berry. 1995. Common ravens in the southwestern United States, 1968-92. In: Our Living Resources: A Report to the Nation on the Distribution, Abundance, and Health of U.S. Plants, Animals, and Ecosystems. Edward T. LaRoe, Gaye S. Farris, Catherine E. Puckett, Peter D. Doran, and Michael J. Mac, editors. U.S. Department of the Interior, National Biological Service.
- Boarman, W.I., R.J. Camp, M. Hagan, W. Deal. 1995. Raven abundance at anthropogenic resources in the western Mojave Desert, California. Report to Edwards Air Force Base, California.
- Boarman, W.I., and M. Sazaki. 1996. Highway mortality in desert tortoises and small vertebrates: success of barrier fences and culverts. Proceedings: Florida Department of Transportation/Federal Highway Administration Transportation-Related Wildlife Mortality Seminar. Evink, G., Ziegler, D., Garrett, P. and Berry, J. (Eds). pp. 169–173.
- Boarman, W.I., and Sazaki, M., 2006, A highway's road-effect zone for desert tortoises (*Gopherus agassizii*): Journal of Arid Environments, v. 65, p. 94–101.
- Boarman, W.I., Sazaki, M., Jennings, B., 1997. The effects of roads, barrier fences and culverts on desert tortoise populations in California, USA. In: Proceedings: Conservation, Restoration, and Management of Tortoises and Turtles — An International Conference, pp. 54–58.

- Boarman, W.I., M.L. Beigel, G.C. Goodlett, and M. Sazaki. 1998. A passive integrated transponder system for tracking animal movements. Wildlife Society Bulletin 26, 886-891.
- Boarman, W.I., W.B. Kristan, W.C. Webb, and H.D. Chamblin. 2005. Raven ecology in the Mojave Desert at Edwards Air Force Base: final report. U.S. Geological Survey, Western Ecological Research Center, Sacramento, California.
- Boarman, W.I., and W.B. Kristan. 2006. Evaluation of evidence supporting the effectiveness of desert tortoise recovery actions. Scientific Investigations Report 2006–5143. U.S. Geological Survey, Western Ecological Research Center, Sacramento, CA.
- Boarman, W.I., Patten, M.A., Camp, R.J., and Collis, S.J., 2006, Ecology of a population of subsidized predators: common ravens in the central Mojave Desert, California: Journal of Arid Environments, v. 67, p. 248–261.
- Bouchard, J., A. T. Ford, F. Eigenbrod, and L. Fahrig. 2009. Behavioral response of northern leopard frogs (*Rana pipens*) to roads and traffic: implications for population persistence. Ecology and Society 14(2): 23. [online] URL: <u>http://www.ecologyandsociety.org/vol14/iss2/art23/</u>.
- Bratzel, S., and R. Tellermann. 2005. Mobilität und Verkehr. Informationen zur politischen Bildung 287(2):44-51.
- Brocke, R.H., J.P. O'Pezio, and K.A. Gustafson. 1988. A forest management scheme mitigating impact of road networks on sensitive wildlife species. In: R.M. Degraaf and W.M. Healy (eds): Is forest fragmentation a management issue in the northeast? GTR-NE-140, U.S. Department of Agriculture, Forest Service, Northeastern Forest Experimental Station, Radnor, PA: 13-17.
- Brooks, M.L., 1995, Benefits of protective fencing to plant and rodent communities of the western Mojave Desert, California: Environmental Management, v. 19, p. 65–74.
- Brooks, M.L., 1999, Alien annual grasses and fire in the Mojave Desert: Madroño, v. 46, p. 13–19.
- Brooks, M.L., 2003, Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave Desert: Journal of Applied Ecology, v. 40, p. 344–353.
- Brooks, M.L., T.C. Esque, and J.R. Matchett. 2003. Current status and management of alien plants and fire in desert tortoise habitat. Desert Tortoise Council Symposium, February 21-23, 2003.
- Brooks, M.L. 2009, Spatial and temporal distribution of non-native plants in upland areas of the Mojave Desert, in Webb, R.H., Fenstermaker, L.F., Heaton, J.S., Hughson, D.L., McDonald, E.V., and Miller, D.M., eds., The Mojave Desert—Ecosystem processes and sustainability: Reno, University of Nevada Press, p. 101–124.

- Brooks, M.L. and K.H. Berry. 1999. Ecology and management of alien annual plants in the California deserts. Calif. Exotic Pest Plant Newsl. 7(3/4):4-6.
- Brooks, M.L., and Berry, K.H., 2006, Dominance and environmental correlates of alien annual plants in the Mojave Desert, USA: Journal of Arid Environments, v. 67, p. 100–124.
- Brooks, M.L., and Esque, T.C., 2002, Alien plants and fire in desert tortoise (*Gopherus agassizii*) habitat of the Mojave and Colorado Deserts: Chelonian Conservation and Biology, v. 4, p. 330–340.
- Brooks, M.L., C.M. D'Antonio, D.M. Richardson, J. B. Grace, J.E. Kelley, J. M. Ditomaso, R.J. Hobbs, M. Pellant, and D. Pyke. 2004. Effects of Invasive Alien Plants on Fire Regimes. Bioscience.(54 (7): 677-688. July 2004.
- Brooks, M.L. and B. Lair. 2005. Ecological Effects of Vehicular Routes in a Desert Ecosystem. Report prepared for the United States Geological Survey, Recoverability and Vulnerability of Desert Ecosystems Program (<u>http://geography.wr.usgs.gov/mojave/rvde</u>).
- Brooks, M.L. and B. M. Lair.2009. Ecological effects of vehicular routes in a desert ecosystem. In: R.H. Webb, L.F. Fenstermaker, J.S. Heaton, D.L. Hughson, E.V. McDonald, and D.M. Miller (eds.). The Mojave Desert: Ecosystem Processes and Sustainability. University of Arizona Press. Tucson, AZ.
- Brooks, M.L., and Matchett, J.R. 2006. Spatial and temporal patterns of wildfires in the Mojave Desert, 1980–2004. Journal of Arid Environments Volume 67, Supplement, 2006, Pages 148-164.
- Brown, D.E., and R.A. Minnich. 1986. Fire and changes in creosote bush scrub of the western Sonoran desert, California. American Naturalist 116(2):411-422.
- Bureau of Land Management. U. S. Fish and Wildlife Service, and California Department of Fish and Game. 1989. Environmental assessment for selected control of the common raven to reduce desert tortoise predation in the Mojave Desert, California. Bureau of Land Management, U. S. Fish and Wildlife Service, and California Department of Fish and Game.
- Bureau of Land Management. 1993. Final Rand Mountains–Fremont Valley Management Plan. A Sikes Act Plan. Bureau of Land Management, Ridgecrest Resource Area, California.
- Bureau of Land Management. 1998. The California Desert Conservation Area Plan 1980, as amended. U.S. Department of the Interior, Bureau of Land Management, California.
- Bureau of Land Management. 1999. Chapter Two Desert Tortoise (*Gopherus agassizii*). Working draft for West Mojave Plan. September 22, 1999. https://www.blm.gov/ca/pdfs/cdd_pdfs/Ch2_9-22-99.pdf

- Bureau of Land Management. 2002. Proposed Northern and Eastern Mojave Desert management plan - Final Environmental Impact Statement – Volumes 1 and 2. California Desert District, Riverside, CA.
- Bureau of Land Management, County of San Bernardino, and City of Barstow. 2005. Proposed West Mojave Plan Final Environmental Impact Report and Statement. BLM/CA/ES-2004-005 + 1790 -1600. Moreno Valley, CA.
- Bureau of Land Management. 2006. Record of decision for the West Mojave Plan. California Desert District, Moreno Valley, CA.
- Bureau of Land Management. 2018a. West Mojave Route Network Project Draft California Desert Conservation Plan Amendment and Supplemental Environmental Impact Statement for the California Desert District. BLM/CA/DOI-BLM-CA-D080-2018-0008-EIS. January 2018. Moreno Valley, CA.
- Bureau of Land Management. 2018b. Stoddard Valley OHV Area. BLM website accessed May 30, 2018. <u>https://www.blm.gov/visit/stoddard-valley-ohv-area</u>
- Burge, B.L. 1977. Daily and seasonal behavior, and areas utilized by the desert tortoise, Gopherus agassizii, in southern Nevada. Proceedings of the Desert Tortoise Council Symposium 1977:59-94.
- Bury, R.B., and Luckenbach, R.A., 2002, Comparison of desert tortoise (Gopherus agassizii) populations in an unused and off-road vehicle area in the Mojave Desert: Chelonian Conservation and Biology, v. 4, p. 457–463.
- Caid, N., P. Crist, R. Gilbert, and P. Wiederkehr. 2002. Environmentally sustainable transport: concept, goal and strategy—the OECD's EST Project. Proceedings of the Institution of Civil Engineers, Transport 153(4):219-226.
- California Turtle and Tortoise Club. 2002. Western Rand Mountains ACEC vehicle closure. https://tortoise.org/conservation/randacec.html
- Carr, L. W., and L. Fahrig. 2001. Effect of road traffic on two amphibian species of different vagility. Conservation Biology 15(4):1071-1078.
- Charis Corporation. 2005. Supplemental Final Environmental Impact Statement Proposed Addition of Maneuver Training Land at Fort Irwin, CA. August 2005. Prepared for the U.S. Army National Training Center, Fort Irwin, California.
- D'Antonio, C.M., and P.M. Vitousek. 1992. Biological invasions by exotic grasses, the grass-fire cycle, and global change. Annual Review of Ecology and Systematics 23: 63–87.
- DeFalco, L.A., Detling, J.K., Tracy, C.R., and Warren, S.D., 2001, Physiological variation among native and exotic winter annual plants associated with microbiotic crusts in the Mojave Desert: Plant and Soil. 234: 1–14.

- Desert Gazette. 2018. El Paso Mountains. <u>http://digital-desert.com/el-paso-mountains/</u> (accessed 2018-5-30)
- Doak, D., P. Kareiva, and B. Klepetka. 1994. Modeling population viability for the desert tortoise in the western Mojave Desert. Ecological Applications 4:446–460.
- Edwards T., A.E. Karl, M. Vaughn, P.C. Rosen, C.M. Torres, and R.W. Murphy. 2016. The desert tortoise trichotomy: Mexico hosts a third, new sister-species of tortoise in the *Gopherus morafkai–G. agassizii* group. ZooKeys 562: 131–158. doi: 10.3897/Zookeys. 562.6124.
- Esque, T.C. 1992. Diet selection of the desert tortoise in the northeast Mojave Desert FY 1991 update. Proceedings of the Desert Tortoise Council Symposium 1992:64-68.
- Esque, T.C. 1994. Diet and diet selection of the desert tortoise (Gopherus agassizii) in the northeastern Mojave Desert. Master's Thesis. Colorado State University, Fort Collins.
- Esque, T.C., Schwalbe, C.R., DeFalco, L.A., Duncan, R.B., and Hughes, T.J., 2003, Effects of desert wildfires on desert tortoise (*Gopherus agassizii*) and other small vertebrates: Southwestern Naturalist, v. 48, p. 103–111.
- Estrada, J. 2017. Events. Tortoise Tracks 37:2 page 1, Summer 2017.
- Fahrig, L., and T. Rytwinski. 2009. Effects of roads on animal abundance: an empirical review and synthesis. Ecology and Society 14(1): 21. [online] URL: <u>http://www.ecologyandsociety.org/vol14/iss1/art21/</u>
- Federal Highway Administration and California Department of Transportation. 2017. Olancha/Cartago Four-Lane Project on U.S. Highway 395 in Inyo County from 2.1 miles south of LA Aqueduct Bridge (#48-068R) to 0.2 mile south of Ash Creek Bridge (#48-11). Final Environmental Impact Report/ Environmental Assessment with Finding of No Significant Impact and Section 4(f) Evaluation.
- Forman, R. T. T. 2000. Estimate of the area affected ecologically by the road system in the United States. Conservation Biology 14(1):31-35.
- Forman, R. T. T., D. Sperling, J. A. Bissonette., A. P. Clevenger, C. D. Cutshal, V. H. Dale, L. Fahrig, R. France, C. R. Goldman, K. Haenue , J. A. Jones, F. J. Swanson, T. Turrentine, and T. C. Winter. 2002. Road ecology—science and solutions. Island Press, Washington, D.C., USA.
- Forman, R.T.T., D.S. Friedman, D. Fitzhenry, J.D. Martin, A.S. Chen, and L.E. Alexander. 1997. Ecological effects of roads: toward three summary indices and an overview of North America. In: Canter K (ed) Habitat fragmentation and infrastructure. Minister of Transport and Public Works and Water Management, Delft, Netherlands, p 40-54.

- Gelbard, J. L., and J. Belnap. 2003. Roads as conduits for exotic plant invasions in a semiarid landscape. Conservation Biology 17:420-432.
- Gibbs, J.P., and W.G. Shriver. 2002. Estimating the effects of road mortality on turtle populations. Conserv. Biol. 16, 1647–1652.
- Goodlett, G. O. and G. C. Goodlett. 1993. Studies of unauthorized off-highway vehicle activity in the Rand Mountains and Fremont Valley, Kern County, California. Proc. 1992 Desert Tort. Counc. Symp. 1993:163-187.
- Gucinski, H., M. Furniss, R. Ziermer, and M. Brookes. 2001. Forest Service roads: a synthesis of scientific information. Gen Tech Rep PNW-GTR-509.1, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR.
- Henen, B.T. 1992. Desert tortoise diet and dietary deficiencies that may limit egg production at Goffs, California. Proceedings of the Desert Tortoise Council Symposium 1992:97.
- Hessing, Mark. Botanist for Fort Irwin. E-mail sent to Connie Rutherford, U.S. Fish and Wildlife Service, Ventura Office, regarding off-road vehicle activity on Coolgardie Mesa. June 3, 2006. Cited in: U.S. Fish and Wildlife Service 2008. Lane Mountain milk-vetch (*Astragalus jaegerianus*) 5-Year Review: Summary and Evaluation. U.S. Fish and Wildlife Service, Ventura Fish and Wildlife Office, Ventura, California. June 2008.
- Jaeger, J.A.G., L. Fahrig, and K.C. Ewald. 2005a. Does the configuration of road networks influence the degree to which roads affect wildlife populations? International Conference on Ecology and Transportation 2005 Proceedings, Chapter 5 - Integrating Transportation and Resource Conservation Planning - Landscapes and Road Networks, pages 151-163. August 29, 2005.
- Jaeger, J.A.G., J. Bowman, J. Brennan, L. Fahrig, D. Bert, J. Bouchard, N. Charbonneau, K. Frank, B. Gruber, K. Tluk von Toschanowitz. 2005b. Predicting when animal populations are at risk from roads: an interactive model of road avoidance behavior. Ecological Modelling 185 (2005) 329–348.
- Jalkotzy, M.G., P.I. Ross, and M.D. Nasserden. 1997. The effects of linear developments on wildlife: a review of selected scientific literature. Arc Wildlife Services Ltd, prepared for Canadian Association of Petroleum Producers, Calgary, Alberta.
- Jennings, B. 1992. Observations on the feeding habits and behavior of desert tortoises at the Desert Tortoise Natural Area, California. Proceeding of the Desert Tortoise Council Symposium 1992:69-81.
- Jennings, W. B. 1993. Foraging ecology of the desert tortoise (*Gopherus agassizii*) in the western Mojave desert. Master's thesis. Arlington, University of Texas: 101 pp.
- Jennings, W. B. 1997. Habitat use and food preferences of the desert tortoise, Gopherus agassizii, in the western Mojave Desert and impacts of off-road vehicles. In J. Van Abbema (ed.),

Proceedings: Conservation, Restoration, and Management of Tortoises and Turtles-An International Conference, pp. 42-45. New York Turtle and Tortoise Society, New York.

- Karraker, N.E., and J.P. Gibbs. 2011. Contrasting road effect signals in reproduction of long-versus short-lived amphibians. Hydrobiologia 664, 213–218.
- Kemp, P.R., and Brooks, M.L., 1998, Exotic species of California deserts: Fremontia, v. 26, p. 30–34.
- Kilgo, J.C., R.F. Labisky, and D.E. Fritzen. 1998. Influences of hunting on the behavior of whitetailed deer: implications for conservation of the Florida panther. Conservation Biology 12:1359-1364.
- Knight, R.L., and Kawashima, J.Y., 1993, Responses of raven and red-tailed hawk populations to linear right-of-ways. Journal of Wildlife Management 57: 266–271.
- Knight, R.L., R.J. Camp, W.I. Boarman, and H.A.L. Knight. 1999. Predatory bird populations in the east Mojave Desert, California. Great Basin Naturalist 59: 331–338.
- LaBerteaux, D.L. 2006. Mustard removal at the Desert Tortoise Research Natural Area, Kern County, California. Report to the Desert Tortoise Preserve Committee, Inc.
- LaRue, E. 1992. Distribution of desert tortoise sign adjacent to Highway 395, San Bernardino County, California. Proceedings of the 1992 Symposium of the Desert Tortoise Council.
- LaRue, E. 1994. Follow-up monitoring report for Stoddard Valley-to-Johnson Valley Point-to-Point Corridor Run. Unpublished report prepared on behalf of the American Motorcyclists Association for the Barstow Resource Area of the Bureau of Land Management.
- LaRue, E. 2008. Latest information on tortoises and other special-status species in Morongo Basin. Morongo Tortoise Update.7-18-2008. Circle Mountain Biological Consultants, Wrightwood, CA. <u>http://www.yucca-valley.org/pdf/general_plan/mb_tortoise_update_july2008.pdf</u>
- LaRue, E. 2014. Mohave Ground Squirrel Trapping Results for Phacelia Wildflower Sanctuary, Los Angeles County, California. <u>https://www.wildlife.ca.gov/Conservation/Mammals/Mohave-Ground-Squirrel/TAG/BlogPage/4/Month/4/Year/2018</u>
- Lei, S. A. 2004. Soil compaction from human trampling, biking, and off-road motor vehicle activity in a blackbrush (*Coleogyne ramosissima*) shrubland. Western North American Naturalist 64:125-130.
- Loughran, C.L., J.R. Ennen, and J.E. Lovich. 2011. *Gopherus agassizii* (desert tortoise). Burrow collapse. Herpetological Review 42(4), 593.
- Lovich, J.E., and Bainbridge, D., 1999, Anthropogenic degradation of the southern California desert ecosystem and prospects for natural recovery and restoration: Environmental Management, v. 24, p. 309–326.

- Lovich, J.E., C.B. Yackulic, J. Freilich M. Agha, M. Austin, K.P. Meyer, T.R. Arundel, J. Hansen, M.S. Vamstad, S.A. Root. 2014. Climatic variation and tortoise survival: Has a desert species met its match? Biological Conservation 169 (2014) 214–224.
- McLellan, B.N., and D.M Shackleton, 1988. Grizzly bears and resource extraction industries: effects of roads on behavior, habitat use and demography. J. Appl. Ecol. 25, 451–460.
- McLuckie, A.M., M.R.M. Bennion, and R.A. Fridell. 2007. Tortoise mortality within the Red Cliffs Desert Reserve following the 2005 wildfire. Utah Division of Wildlife Resource Publication 07-05.
- Medica, P.A., R.B. Bury, and F.B. Turner. 1975. Growth of the desert tortoise (Gopherus agassizii) in Nevada. Copeia 1975:639-643.
- Minnich, J.E. 1970. Water and electrolyte balance of the desert iguana, *Dipsosaurus dorsalis*, in its native habitat. Comparative Biochemistry and Physiology 35:921-933.
- Minnich, J.E. 1979. Comparison of maintenance electrolyte budgets of free-living desert and gopher tortoises (*Gopherus agassizii* and *G. polyphemus*). Proceedings of the Desert Tortoise Council Symposium 1979 Pp.166-174.
- Murphy, R.W., Berry, K.H., Edwards, T., Leviton, A.E., Lathrop, A., and Riedle, J.D., 2011, The dazed and confused identity of Agassiz's land tortoise, *Gopherus agassizii* (Testudines, Testudinidae) with the description of a new species, and its consequences for conservation: ZooKeys, v. 113, p. 39–71.
- Nafus, M.G., T.D. Tuberville, K. A. Buhlmann, and B.D. Todd. 2013. Relative abundance and demographic structure of Agassiz's desert tortoise (*Gopherus agassizii*) along roads of varying size and traffic volume. Biological Conservation 162 (2013) 100–106.
- Nagy, K.A. 1972. Water and electrolyte budgets of a free-living desert lizard, *Sauromalus obesus*. Journal of Comparative Physiology 79:93-102.
- Nagy, K.A., and P.A. Medica. 1986. Physiological ecology of desert tortoises. Herpetologica 42:73-92.
- Nagy, K.A., Henen, B.T., and Vyas, D.B., 1998, Nutritional quality of native and introduced food plants of wild desert tortoises: Journal of Herpetology, v. 32, p. 260–267.
- Noss, R. F. 1993. Wildlife corridors. Pages 43-68 in D. S. Smith and P. C. Hellmund, editors. Ecology of Greenways. University of Minneapolis Press, Minneapolis, Minnesota.
- Noss, R. F. 1995. Maintaining ecological integrity in representative reserve networks. World Wildlife Fund, Canada.

- [OECD] Organization for Economic Co-operation and Development. 2002. OECD guidelines towards environmentally sustainable transport. OECD Publications, Paris, France.
- Oftedal, O.T. 2002. The nutritional ecology of the desert tortoise in the Mojave and Sonoran deserts. Pages 194-241 in T.R. Van Devender (ed.), The Sonoran Desert Tortoise; Natural History, Biology and Conservation. University of Arizona Press, Tucson, Arizona.
- Oftedal, O.T., L.S. Hillard, and D.J. Morafka. 2002. Selective spring foraging by juvenile desert tortoises (Gopherus agassizii) in the Mojave Desert—Evidence of an adaptive nutritional strategy: Chelonian Conservation and Biology, v. 4, p. 341–352.
- Oftedal, O.T. and M.E. Allen. 1996. Nutrition as a major facet of reptile conservation. Zoo Biology 15:491-497.
- Parendes, L.A., and J.A. Jones. 2000. Role of light availability and dispersal in exotic plant invasion along roads and streams in the H. J. Andrews Experimental Forest, Oregon. Conservation Biology 14:64.
- Rytwinski, T., and L. Fahrig. 2011. Reproductive rate and body size predict road impacts on mammal abundance. Ecol. Appl. 21, 589–600.
- Rytwinski, T., and L. Fahrig. 2012. Do species life history traits explain population responses to roads? A meta-analysis. Biol. Conserv. 147, 87–98.
- Roedenbeck, I.A., L. Fahrig, C. S. Findlay, J. E. Houlahan, J.A.G. Jaeger, N. Klar, S. Kramer-Schadt, and E. A. van der Grift. 2007. The Rauischholzhausen Agenda for Road Ecology. Ecology and Society 12(1): 11. <u>http://www.ecologyandsociety.org/vol12/iss1/art11/</u>
- Rudis, V.A. 1995. Regional forest fragmentation effects on bottomland hardwood community types and resource values. Landsc. Ecol. 10:291-307.
- Sanson, L. 2016. Marines seek plan to move tortoises from Johnson Valley. Hi-Desert Star September 8, 2016. <u>http://www.hidesertstar.com/news/article_c51696c6-7609-11e6-847d-03224974e42a.html</u>
- Sazaki, M., W.I. Boarman, G. Goodlett, and T. Okamoto. 1995. Risk associated with long-distance movement by desert tortoises. Proceedings of the Desert Tortoise Council 1994 Symposium. pp. 33–48.
- Schlesinger, W.H. and C.S. Jones. 1984. The Comparative Importance of Overland Runoff and Mean Annual Rainfall to Shrub Communities of the Mojave Desert. Botanical Gazette 1984 145(1): 116-124.
- Sharifi, M.R., A.C. Gibson, and P.W. Rundel. 1997. Surface Dust Impacts on Gas Exchange in Mojave Desert Shrubs. Journal of Applied Ecology, 34(4)(Aug., 1997):837-846.

- Sherwood, B., D. Cutler, and J. A. Burton. 2002. Wildlife and roads—the ecological impact. Imperial College Press, London, UK.
- Spellerberg, I. F. 2002. Ecological effects of roads. Land Reconstruction and Management Series, Volume 2. Science Publishers, Enfield, UK.
- Tierra Madre Consultants. 1991. Biological assessment for Lancaster City and Planning Area: Relative density surveys for desert tortoises and cumulative human impact evaluations for Mohave ground squirrel habitat. Report prepared by Ed LaRue for City of Lancaster. Tierra Madre Consultants, Riverside, CA.
- C.R. Tracy, L.C. Zimmerman, C. Tracy, K.D. Bradley, and K. Castle. 2006. Rates of food passage in the digestive tract of young desert tortoises: Effects of body size and diet quality. Chelonian Conservation and Biology: December 2006, Vol. 5, No. 2, pp. 269-273.
- Zimmerman, L.C., Espinoza, R.E., and Barber, A.M., 2006a, The importance of physiological ecology in conservation biology: Integrative and Comparative Biology, v. 46, p. 1,191–1,205.
- Tratz, W.M. 1978. Postfire vegetational recovery, productivity and herbivore utilization of a chaparral-desert ecotone. Master's Thesis. California State University, Los Angeles.
- Tratz, W.M., and R.J. Vogl. 1977. Postfire vegetational recovery, productivity and herbivore utilization of a chaparral-desert ecotone. Pages 426-430 in H.A. Mooney and C.E. Conrad (eds.), Proceedings of Symposium on Environmental Consequences of Fire and Fuel Management in Mediterranean Ecosystems. USDA Forest Service General Technical Report WO-3.
- Trombulak, S. C., and C. A. Frissell. 2000. Review of ecological effects of roads on terrestrial and aquatic communities. Conservation Biology 14:18–30.
- Turner, F.B., P. Hayden, B.L. Burge, and J.B. Roberson. 1986. Egg production by the desert tortoise (Gopherus agassizii) in California. Herpetologica 42:93-104.
- Turner, F.B., K.H. Berry, D.C. Randall, and G.C. White. 1987. Population ecology of the desert tortoise at Goffs, California, 1983-1986. Report to Southern California Edison Co., Rosemead, California.
- Turtle Conservation Coalition. 2018. Turtles in Trouble: The World's 25+ Most Endangered Tortoises and Freshwater Turtles. <u>www.iucn-tftsg.org/trouble</u>
- Umweltbundesalt (UBA). 2003. Reduzierung der Flächeninanspruchnahme durch Siedlung und Verkehr. Materialienband. Umweltbundesamt Texte 90/03, Berlin, Germany. Available online at: <u>http://www.umweltdaten.de/publikationen/fpdf-l/2587.pdf</u>.
- Underhill, J. E., and P. G. Angold. 2000. Effects of roads on wildlife in an intensively modified landscape. Environmental Reviews 8:21-39.

- U.S. District Court. 2011. Order re: remedy. Case 3:06-cv04884-SI. Center for Biological Diversity, et al., Plaintiffs v. BLM. United States District Court for the Northern District of California, USA. As cited in Berry, K.H., L.M. Lyren, J.L. Yee, and T.Y. Bailey. 2014. Protection benefits desert tortoise (*Gopherus agassizii*) abundance: the influence of three management strategies on a threatened species. Herpetological Monographs, 28 2014, 66– 92.
- U.S. Ecology. 1989. Proponent's Environmental Assessment. California Low-Level Radioactive Waste Disposal Site. Appendices K and M, Volume II.
- U.S. Fish and Wildlife Service. 1994a. Endangered and threatened wildlife and plants; determination of critical habitat for the Mojave population of the desert tortoise. Federal Register 55(26):5820-5866. Washington, D.C.
- U.S. Fish and Wildlife Service. 1994b. Desert tortoise (Mojave population) Recovery Plan. U.S. Fish and Wildlife Service, Region 1, Portland, Oregon. 73 pages plus appendices.
- U.S. Fish and Wildlife Service. 2008. Lane Mountain milk-vetch (*Astragalus jaegerianus*) 5-Year Review: Summary and Evaluation. Ventura Fish and Wildlife Office, Ventura, California.
- U.S. Fish and Wildlife Service. 2011a. Revised recovery plan for the Mojave population of the desert tortoise (*Gopherus agassizii*). U.S. Fish and Wildlife Service, Pacific Southwest Region, Sacramento, California. 222 pp.
- U.S. Fish and Wildlife Service. 2011b. Biological Opinion on Mojave Solar, LLC's Mojave Solar Project, San Bernardino County, California (8-8-11-F-3). Ventura Fish and Wildlife Office, Ventura, CA.
- U.S. Fish and Wildlife Service 2014a. 12-month finding on a petition to reclassify *Astragalus jaegerianus* as a threatened Species. 79 Federal Register 25084-25092, Friday, May 2, 2014.
- U.S. Fish and Wildlife Service. 2014b. Determination of threatened status for the western distinct population segment of the yellow-billed cuckoo (*Coccyzus americanus*); Final Rule. 79 Federal Register 59992-60038.
- U.S. Fish and Wildlife Service. 2014c. Designation of critical habitat for the western distinct population segment of the yellow-billed cuckoo; Proposed Rule. 29 Federal Register 48548-48652.
- U.S. Fish and Wildlife Service. 2015. Range-wide Monitoring of the Mojave Desert Tortoise (*Gopherus agassizii*): 2013 and 2014 Annual Reports. Report prepared by Linda Allison for the Desert Tortoise Recovery Office, U.S. Fish and Wildlife Service, Reno, Nevada.
- van der Ree R., J. A. G. Jaeger, E. A. van der Grift, and A. P. Clevenger. 2011. Effects of roads and traffic on wildlife populations and landscape function: Road ecology is moving toward

larger scales. Ecology and Society 16(1): 48. [online] URL: <u>http://www.ecologyandsociety.org/vol16/iss1/art48/</u>

von Seckendorff Hoff, K., and Marlow, R.W. 2002. Impacts of vehicle road traffic on desert tortoise populations with consideration of conservation of tortoise habitat in southern Nevada. Chelonian Conservation and Biology 4:449–456.